Drug in Adhesive Transdermal Formulation of Valsartan and Nifedipine: Pharmacokinetics and Pharmacodynamics in Rats

2019 ◽  
Vol 14 (2) ◽  
pp. 153-167
Author(s):  
Jatin Sood ◽  
Bharti Sapra ◽  
Ashok K. Tiwary

Background: The increasing complications associated with hypertension often require a combination of two or more drugs acting through different routes to counter the elevated blood pressure. Objective: The present investigation envisaged at preparing and evaluating a transdermal formulation containing gelled microemulsion drug in adhesive (DIA) patch for simultaneous systemic delivery of valsartan and nifedipine aimed at effective management of hypertension. Methods: An optimized microemulsion was prepared by using Captex® 500 (7.34% w/w), Capmul® MCM (4.24% w/w), Acrysol EL 135 (24.43% w/w), Transcutol P® (5% w/w) and water (58.9% w/w). Gelling was contributed by polyvinylpyrrolidone K 90F and polyethyleneimine where the latter also conferred skin adhesion properties to the patch. DIA patches were evaluated for in vitro drug release as well as in vivo pharmacokinetics and pharmacodynamics in rats. Results: In vitro permeation of nifedipine or valsartan from the selected DIA patch was 10.67-fold and 1.25-fold higher as compared to their aqueous dispersions. The relative bioavailability of nifedipine was 1.34 and that of valsartan was 2.18 from this DIA patch with respect to the oral administration of their aqueous suspension. Conclusion: Transdermal delivery of either drug alone was not effective in reducing methyl prednisolone acetate-induced hypertension, whereas, simultaneous transdermal delivery of both drugs from DIA patch effectively maintained systolic blood pressure at a normal level in these rats for 20 h.

2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


1986 ◽  
Vol 61 (1) ◽  
pp. 185-191 ◽  
Author(s):  
C. A. Hales ◽  
R. D. Brandstetter ◽  
C. F. Neely ◽  
M. B. Peterson ◽  
D. Kong ◽  
...  

Acute pulmonary and systemic vasomotor changes induced by endotoxin in dogs have been related, at least in part, to the production of eicosanoids such as the vasoconstrictor thromboxane and the vasodilator prostacyclin. Steroids in high doses, in vitro, inhibit activation of phospholipase A2 and prevent fatty acid release from cell membranes to enter the arachidonic acid cascade. We, therefore, administered methylprednisolone (40 mg/kg) to dogs to see if eicosanoid production and the ensuing vasomotor changes could be prevented after administration of 150 micrograms/kg of endotoxin. The stable metabolites of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) were measured by radioimmunoassay. Methylprednisolone by itself did not alter circulating eicosanoids but when given 2.5 h before endotoxin not only failed to inhibit endotoxin-induced eicosanoid production but actually resulted in higher circulating levels of 6-keto-PGF1 alpha (P less than 0.05) compared with animals receiving endotoxin alone. Indomethacin prevented the steroid-enhanced concentrations of 6-keto-PGF1 alpha after endotoxin and prevented the greater fall (P less than 0.05) in systemic blood pressure and systemic vascular resistance with steroid plus endotoxin than occurred with endotoxin alone. Administration of methylprednisolone immediately before endotoxin resulted in enhanced levels (P less than 0.05) of both TxB2 and 6-keto-PGF1 alpha but with a fall in systemic blood pressure and vascular resistance similar to the animals pretreated by 2.5 h. In contrast to the early steroid group in which all of the hypotensive effect was due to eicosanoids, in the latter group steroids had an additional nonspecific effect. Thus, in vivo, high-dose steroids did not prevent endotoxin-induced increases in eicosanoids but actually increased circulating levels of TxB2 and 6-keto-PGF1 alpha with a physiological effect favoring vasodilation.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


2007 ◽  
Vol 9 (4) ◽  
pp. 421-433 ◽  
Author(s):  
Donatella Paolino ◽  
Rita Muzzalupo ◽  
Antonio Ricciardi ◽  
Christian Celia ◽  
Nevio Picci ◽  
...  

2015 ◽  
Vol 26 (3) ◽  
pp. 221-232 ◽  
Author(s):  
A. B. Shreya ◽  
Renuka S. Managuli ◽  
Jyothsna Menon ◽  
Lavanya Kondapalli ◽  
Aswathi R. Hegde ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Sarah B Mueller ◽  
Susan B Gurley ◽  
Christopher D Kontos

Disruptions in the function of the quiescent endothelial cells (ECs) that line mature vessels can both result in and contribute to the progression of numerous cardiovascular diseases including hypertension, atherosclerosis, and disorders of vascular permeability. Despite recent attention, the signaling pathways that are active in quiescent ECs remain poorly characterized relative to those that regulate EC activation. In an effort to provide mechanistic insight into these pathways, we have characterized the previously undescribed protein Caskin2, which we hypothesize is a novel regulator of EC quiescence. Caskin2 is expressed in ECs throughout the vasculature, including the aorta, coronary arteries, and renal glomeruli. In vitro, Caskin2 promotes a quiescent EC phenotype characterized by decreased proliferation and increased resistance to apoptosis-inducing factors. Caskin2 knockout mice are viable and fertile. However, preliminary radiotelemetry measurements indicate that Caskin2 knockout (KO) mice have mildly elevated systemic blood pressure (BP). Compared to wild type (WT) littermates (n=8), Caskin2 KO mice (n=7) had increased mean arterial pressure (119+/-1 vs. 113+/-1, p=0.012), systolic BP (138+/-2 vs. 132+/-2, p=0.023), and diastolic BP (99+/-1 vs. 93+/-1, p=0.014) at baseline. To explore the molecular mechanisms of Caskin2’s effects, we used mass spectrometry to identify interacting proteins. Among the 67 proteins identified were the Ser/Thr phosphatase protein phosphatase 1 (PP1) and eNOS. Using standard in vitro biochemical techniques, we demonstrated that Caskin2 acts as a PP1 regulatory subunit. Interestingly, homologous expression of Caskin2 in vitro resulted in a marked increase in phosphorylation of eNOS on S1177, which is known to promote eNOS activity, and a decrease in phosphorylation on T495, which is associated with eNOS inhibition. Finally, PP1 has been shown to dephosphorylate eNOS T495 in vitro, suggesting a molecular mechanism for our in vivo findings. Ongoing work aims to determine if the interaction of Caskin2 and PP1 is required for the Caskin2-induced increase in activating phosphorylation of eNOS and to characterize the physiological mechanisms responsible for Caskin2’s effects on BP in more detail.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


Sign in / Sign up

Export Citation Format

Share Document