mentha pulegium
Recently Published Documents





2022 ◽  
Vol 146 ◽  
pp. 196-204
Fayza Abbou ◽  
Rachid Azzi ◽  
Khaoula Ouffai ◽  
Imad Abdelhamid El Haci ◽  
Nabila Belyagoubi-Benhammou ◽  

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 314
Jed Jebali ◽  
Hanene Ghazghazi ◽  
Chedia Aouadhi ◽  
Ines ELBini-Dhouib ◽  
Ridha Ben Salem ◽  

Mint species (Lamiaceae family) have been used as traditional remedies for the treatment of several diseases. In this work, we aimed to characterize the biological activities of the total phenolic and flavonoid contents of Mentha pulegium L. extracts collected from two different regions of Tunisia. The highest amounts of total phenols (74.45 ± 0.01 mg GAE/g DW), flavonoids (28.87 ± 0.02 mg RE/g DW), and condensed tannins (4.35 ± 0.02 mg CE/g DW) were found in the Bizerte locality. Methanolic leaf extracts were subjected to HPLC-UV analysis in order to identify and quantify the phenolic composition. This technique allowed us to identify seven phenolic compounds: two phenolic acids and five flavonoid compounds, such as eriocitrin, hesperidin, narirutin, luteolin, and isorhoifolin, which were found in both extracts with significant differences between samples collected from the different regions (p < 0.05). Furthermore, our results showed that the methanolic extract from leaves collected from Bizerte had the highest antioxidant activities (DPPH IC50 value of 16.31 μg/mL and 570.08 μmol Fe2+/g, respectively). Both extracts showed high radical-scavenging activity as well as significant antimicrobial activity against eight tested bacteria. The highest antimicrobial activities were observed against Gram-positive bacteria with inhibition zone diameters and MIC values ranging between 19 and 32 mm and 40 and 160 µg/mL, respectively. Interestingly, at 10 μg/mL, the extract had a significant effect on cell proliferation of U87 human glioblastoma cells. These findings open perspectives for the use of Mentha pulegium L. extract in green pharmacy, alternative/complementary medicine, and natural preventive therapies for the development of effective antioxidant, antibacterial, and/or antitumoral drugs.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 11
Mohammed Messaoudi ◽  
Abdelkrim Rebiai ◽  
Barbara Sawicka ◽  
Maria Atanassova ◽  
Hamza Ouakouak ◽  

Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild Mentha pulegium L. This study also determined the mineral (nutritional and toxic) elements in the plant. The EOs were extracted using three techniques—hydro distillation (HD), steam distillation (SD), and microwave-assisted distillation (MAD)—and were analyzed using chromatography coupled with flame ionization (GC-FID) and gas chromatography attached with mass spectrometry detector (GC-MS). The antioxidant effects of the EOs were tested with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), while the antibacterial and antifungal activities of the EO and methanolic extract were tested using Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Twenty-six compounds were identified in the essential oil, representing 97.73% of the total oil, with 0.202% yield. The major components were pulegone (74.81%), menthone (13.01%) and piperitone (3.82%). Twenty-one elements, including macro- and micro-elements (Ba, Br, Ca, Cl, Co, Cr, Cs, Eu, Fe, K, Mg, Mn, Mo, Na, Rb, Sb, Sc, Sr, Th, U and Zn), were detected using neutron activation analysis (INAA) and inductively coupled plasma optical emission spectrometry (ICP-OES), with the concentration of mineral element close to the FAO recommendation. The results show that the EOs and extracts from Mentha pulegium L. had significant antimicrobial activities against the microorganisms, including five human pathogenic bacteria, one yeast (Candida albicans), and one phytopathogenic fungi. The in vivo anti-inflammatory activities of the leaf extracts were confirmed. The results indicate that the EOs and extracts from Mentha pulegium L. have promising applications in the pharmaceutical industries, clinical applications, and in medical research.

2021 ◽  
Vol 2 (11) ◽  
pp. 1117-1120
Waill A Elkhateeb ◽  
Ghoson M Daba

Background: Emerging of microbial resistance, spread of life-threatening diseases, and biological control of pathogens destroying economically important crops, are serious problems that encourage scientists to search for unusual sources for novel compounds with biological activities. Fungi are promising sources for such compounds due to their ability to produce variety of secondary metabolites that could be, if truly investigated, the solution for currently serious problems. Aim: The aim of this review is to highlight the diversity of compounds produced by endophytic Stemphylium and Ulocladium and represents their ability to produce biologically diverse metabolites. Materials and methods: This was a narrative review. A comprehensive literature search was done using PubMed, Google Scholar, Scopus, and EMBASE using the keywords, Stemphylium; Ulocladium; Secondary metabolites; biological activities. Results: Many studies reported that the endophytic Ulocladium especially, Ulocladium atrum Preuss, showed promising biocontrol activity against Botrytis cinerea on crops cultivated in the greenhouse and the field. The endophytic fungus Stemphylium especially, Stemphylium globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus exhibited significant cytotoxicity when tested in vitro against L5178Y cells. Conclusion: Endophytic fungi are a noble and consistent source of unique natural mixtures with a high level of biodiversity and may also yield several compounds of pharmaceutical significance, which is currently attracting scientific surveys worldwide. Every study conducted on Stemphylium and Ulocladium resulted in discovery of new metabolites or pointing to a possible application, which made Stemphylium and Ulocladium species potential source of pharmaceuticals and attracted attention for further investigations of their biological control.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Abdur Rauf ◽  
Muhammad Akram ◽  
Prabhakar Semwal ◽  
Adil A. H. Mujawah ◽  
Naveed Muhammad ◽  

Numerous medicinal plants have been utilized for the treatment of different types of diseases and disorders including gastrointestinal (GI) diseases. GI diseases are the most common complaints that normally affects the largest proportion of children and adolescents with overlapping clinical manifestation in diagnosis and medical needs. Drugs with antispasmodic effects are normally applied for the symptomatic treatment of contraction and cramping of smooth muscles in gastrointestinal diseases as well as in other critical clinical situations. In alternative system of medicines, the antispasmodic herbs played a significant role in the cure of GI diseases. These medicinal plants and their herbal products are used from generation to generation because of multiple nutritional and therapeutic benefits. The multiple uses might be attributed to the presence on biologically active chemical constitutes. The main aim of this review is to focus on the medicinal potential of plants possessing antispasmodic activities with their proposed mechanism of action. Several databases such as Google Scholar, Cochrane database, Scopus, and PubMed were used to search the relevant literature regarding “plants with antispasmodic activities.” This present study highlights the updated and quantified information on several medicinal plants with antispasmodic activity like Zanthoxylum armatum, Matricaria chamomilla, Foeniculum vulgare, Pycnocycla spinosa, Atropa belladonna, Lavandula angustifolia, Mentha pulegium, Glycyrrhiza ularensis, Anethum graveolens, and Origanum majorana. Moreover, recent studies on other medicinal plant species also have been included in this review article. Additionally, the study also revealed that the active compounds of all these plants possess significant spasmolytic effect which is safest, efficacious, and cost effective as compared to the available synthetic drugs.

Sign in / Sign up

Export Citation Format

Share Document