Optimization of Solid Lipid Nanoparticles and Nanostructured Lipidic Carriers as Promising delivery for Gefitinib: Characterization and Invitro Evaluation.

2021 ◽  
Vol 16 ◽  
Author(s):  
Akshat Shah ◽  
Asha Patel ◽  
Abhay Dharamsi

Background: Response surface methodology is a unique tool for the optimization of Solid lipid Nanoparticles and Nanostructured lipid carriers by developing the relationship between dependent and independent variables and exploring their interactions. Methods: Central Composite Design and Box Benkhen Design was used to develop optimized formulations of Gefitinib [GEF] Solid Lipid Nanoparticles [SLN] and Nanostructured Lipidic Carriers [NLC]. In the design matrix, the independent variables chosen were the amount of Solid Lipid, Liquid Lipid, and Surfactant and dependent variables were Particle Size and Poly Dispersity Index. Result: The GEF-SLN under optimized conditions gave rise to Particle size (187.9 nm ± 1.15), PDI (0.318 ± 0.006), %EE (95.38%±0.14), Zeta Potential (-8.75 mv ±0.18) and GEF-NLC under optimized conditions gave rise to Particle size (188.6 nm± 1.12), PDI (0.395± 0.004), %EE (97.46%± 0.33), Zeta Potential (-5.72 mv± 0.04) respectively. SEM of the Freeze-dried optimized lipidic carriers showed spherical particles. The in vitro experiments proved that Gefitinib in the lipidic carriers is released gradually throughout 24 h. Conclusion: This study showed that the response surface methodology could be efficiently applied for the modeling of GEF-SLN & GEF-NLC.

2017 ◽  
Vol 9 ◽  
pp. 107
Author(s):  
Damai Ria Setyawati ◽  
Silvia Surini ◽  
Etik Mardliyati

Objective: This research was carried out to optimize luteolin-loaded transfersome formula with independent variables such as lipid–surfactant (totallipid) concentration and luteolin concentration.Methods: Luteolin-loaded transfersome was optimized by response surface methodology based on four parameters, namely, particle size (Z-average),polydispersity index, zeta potential, and entrapment efficiency. The transfersome formula was prepared using central composite design, and theselected independent variables were the total lipid (mixture of phospholipid and Tween 80) and luteolin concentrations. 14 formulas of luteolinloadedtransfersome were prepared by thin film hydration, followed by the sonication method.Results: The total lipid and luteolin concentration significantly affected the entrapment efficiency only. The other parameters were not affected by achange in these variables. The optimum formula of 4.88% total lipid and 0.5% luteolin with desirability value of 0.609 conformed with the predictionparameters. Vesicle imaging using transmission electron microscopy revealed spherical particles and the occurrence of particle aggregation. Theoptimum formula of luteolin-loaded transfersome possessed the following characteristics: Particle size of 286.03±8.46 nm, polydispersity indexof 0.480±0.013, zeta potential of -18.67±0.379 mV, and entrapment efficiency of 94.97±0.28 %. However, these values did not correspond to thepredicted values and were confirmed by the low adjusted and predicted R-squared values.Conclusion: This method can be applied to optimize the entrapment efficiency, and in the future, it can be used for further optimizing formula oftransfersome by including more variables.


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Seyed Sadegh Shahraeini ◽  
Jafar Akbari ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Shidrokh Abootorabi ◽  
...  

Abstract In the current research, the main focus was to overcome dermal delivery problems of atorvastatin. To this end, atorvastatin solid lipid nanoparticles (ATR-SLNs) were prepared by ultra-sonication technique. The prepared SLNs had a PDI value of ≤ 0.5, and the particle size of nanoparticles was in the range 71.07 ± 1.72 to 202.07 ± 8.40 nm. It was noticed that, when the concentration of lipid in ATR-SLNs increased, the size of nanoparticles and drug entrapment efficiency were also increased. Results showed that a reduction in the HLB of surfactants used in the preparation of SLN caused an increase in the particle size, zeta potential (better stability), and drug entrapment efficiency. Despite Tween and Span are non-ionic surfactants, SLNs containing these surfactants showed a negative zeta potential, and the absolute zeta potential increased when the concentration of Span 80 was at maximum. DSC thermograms, FTIR spectra, and x-ray diffraction (PXRD) pattern showed good incorporation of ATR in the nanoparticles without any chemical interaction. In vitro skin permeation results showed that SLN containing atorvastatin was capable of enhancing the dermal delivery of atorvastatin where a higher concentration of atorvastatin can be detected in skin layers. This is a hopeful promise which could be developed for clinical studies of the dermal delivery of atorvastatin nanoparticles as an anti-inflammatory agent.


Author(s):  
MUHAMAD WILDAN NUGRAHA ◽  
RADITYA ISWANDANA ◽  
MAHDI JUFRI

Objective: Tween 80 has been used as a solvent for the extraction of phenolic compounds because this surfactant has both hydrophilic and hydrophobicproperties. Solid lipid nanoparticles (SLNs) have been developed to improve penetration through the skin layer. We investigated the efficacy of usingthe microwave-assisted micellar extraction (MAME) approach for extracting oxyresveratrol from Morus alba roots and also to develop an SLN lotion.Methods: The M. alba roots were extracted with Tween 80 in a microwave for 18 min, and the extract was used to develop SLN with differentconcentrations of glyceryl monostearate. The SLNs from M. alba root extracts were prepared by a high-speed homogenization technique (25,000 rpmfor 15 min). The SLNs produced were characterized as per particle size, polydispersity index (PDI), and zeta potential. The SLNs with the bestcharacteristics were used to formulate a lotion using a high-pressure homogenizer.Results: Extraction using MAME showed improved extraction efficiency. The oxyresveratrol concentration from the extract was 2.77%. The SLN with2.5% glyceryl monostearate showed the optimum result, with a particle size of 130.20 nm, a PDI of 0.278, and a zeta potential of −21.8 mV. The SLNlotion exhibited a particle size of 285.9 nm and a PDI of 0.360. The SLN lotion also had good penetration, with a flux of 4.70 μg cm−2/h.Conclusion: MAME is an efficient method for extracting oxyresveratrol from M. alba roots. The SLN with 2.5% glyceryl monostearate exhibited theoptimum characteristics, and the SLN lotion showed good characteristics, including skin penetration.


2018 ◽  
Vol 8 (6) ◽  
pp. 125-131
Author(s):  
Indrayani D. Raut ◽  
Rajendra C. Doijad ◽  
Shrinivas K. Mohite ◽  
Arehalli S. Manjappa

Cisplatin (Cis diaminedichloro platinum) was the first platinum drug to be used as an anticancer drug, and it is widely used in the treatment of testicular, head, neck, ovarian and lung cancer. The use of Cisplatin is limited due to its intrinsic and acquired resistance and severe side effects such as chronic neurotoxicity and nephrotoxicity. The colloidal carriers such as emulsion, liposomes, polymeric nanoparticles have been extensively studied to overcome above limitations. The solid lipid nanoparticles (SLNs), amongst other colloidal carriers, were found to be an ideal carrier for lipophillic drug for better stability and release retardation. Cisplatin loaded solid lipid nanoparticles was prepared by microemulsion technique. Stearic acid was used as lipid. The other excipients were used as DPPG, Soya lecithin and Poloxamer P407  and acidic buffer  PH4. Also used Probe sonication for 10 min at 79 Amplitude. Cisplatin SLNs Batch C13 showed particle size of 119.23±1.52 nm, Zeta potential of -37.33±2.47 mV, % Entrapment efficiency of  90.2 ± 2.1 %., % Drug loading capacity of 1.62 ± 1.34 %., The TEM study of optimized Cisplatin SLN illustrated the spherical shape of nanoparticles. Total release amount of Cisplatin was 82.62± 2.04 % after 48 hrs. The formulation performed kinetics study followed Peppas plot equation The SLNs of Cisplatin met all the requirements of a colloidal drug delivery system. They had particle size in nanosize; their size distribution was narrow and all the particles were in spherical shape and stable. Keywords: Cisplatin, Solid Lipid nanoparticles, zeta potential, Particle size, Transmission electron Microscopy.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Enliang Zhao ◽  
Tonghui Yi ◽  
Juan Du ◽  
Jing Wang ◽  
Shan Cong ◽  
...  

Background. With the increasing resistance of antibiotics to bacteria, new and effective methods are needed to transform existing antibiotics to solve the problem of long development cycles for new drugs. The antibiotic nanodelivery system has proven to be a promising strategy. Aim. The purpose of this study is to synthesize penicillin solid lipid nanoparticles (penicillin SLNs) to enhance the antibacterial activity of penicillin against drug-resistant Staphylococcus aureus. Materials and Methods. Penicillin SLNs were synthesized. And particle size, the polydispersity index (PI), and zeta potential (ZP) of penicillin SLNs were measured. The surface morphology of penicillin SLNs was observed using a transmission electron microscope. Results. The particle size of penicillin SLNs is 112.3 ± 11.9   nm , the polydispersity index (PI) and zeta potential (ZP) of penicillin SLNs are 0.212 ± 0.03 and − 27.6 ± 5.5   mV . The encapsulation efficiency and drug loading were 98.31 ± 1.2 % and 4.98 ± 0.05 ( % w / w ), respectively. Penicillin SLNs had a more significant inhibitory effect on the growth of methicillin-sensitive Staphylococcus aureus (MSSA) after the drug and the bacteria were incubated for 12 hours. The number of MRSA colonies in the penicillin group increased after 12 hours, while the number of MRSA colonies in the penicillin SLNs group did not change significantly. Conclusion. Penicillin SLNs enhance the ability of penicillin to enter cells and increase the concentration of penicillin in the cell and also extend the residence time of penicillin in the cell. Our findings indicated that penicillin SLNs enhance the inhibitory effect of penicillin on drug-resistant Staphylococcus aureus.


2016 ◽  
Vol 16 (2) ◽  
pp. 1238-1247 ◽  
Author(s):  
Carine Dal Pizzol ◽  
André O’Reilly Beringhs ◽  
Evelyn Winter ◽  
Diva Sonaglio ◽  
Angela Machado de Campos ◽  
...  

Author(s):  
Pavan Kumar Rawat ◽  
Chandra Kishore Tyagi ◽  
Sunil Kumar Shah ◽  
Arun Kumar Pandey

Famciclovir loaded Solid Lipid Nanoparticles (SLNs) using triglycerides as solid lipids were successfully prepared using the double emulsion-solvent evaporation technique. Formulation parameters like amount and type of lipid and level of surfactants affected the nanoparticle characters. It was observed that nanoparticle characters like average particle size and distribution, drug content, entrapment efficiency and release pattern were dependent on these formulation variables. The optimized formulations depicted the desired characters of low particle size, in the range of 140-170 nm in case of Glyceryl monostearate (GMS) and glyceryl distearate (GDS) SLNs and 250-340 nm in case of glyceryl behenate (GB) SLNs and entrapment efficiencies in the range of 35-48%. In vitro drug release was extended upto 8 h and the release profile was explained by the Baker-Lonsdale model for spherical particles. Morphological examination by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) displayed homogenous solid, spherical and non- porous particles. The formulations depicted good redispersibility after lyophilization and presence of residual solvents in the formulations within the prescribed limits suggested suitability of the preparation technique. Freeze- dried formulations were found to be stable in terms of particle size and drug loading even after 6 months of storage at refrigerated conditions.


Author(s):  
PAKORN KRAISIT ◽  
NAMON HIRUN ◽  
PREMJIT LIMPAMANOCH ◽  
SONTAYA LIMMATVAPIRAT

Objective: This study aimed to prepare fluconazole (FZ)-loaded solid lipid nanoparticles (SLNs) using a simplex centroid design and fatty acids to optimize the SLNs to get small-sized nanoparticles with a narrow distribution. Methods: Hot emulsification was used to prepare the FZ-loaded SLNs. Stearic acid (Sa) (X1), palmitic acid (Pa) (X2), and myristic acid (Ma) (X3) were the solid lipids. The effect of various types and amounts of fatty acids on the particle size, polydispersity index, zeta potential, and pH of the SLNs was studied using the simplex centroid design. Results: The particle size of all formulations ranged between 16.49 nm and 56.65 nm, and the polydispersity index (PDI) ranged between 0.258 and 0.676, indicating a relatively narrow size distribution. The zeta potential ranged from–7.47 to–12.2 mV. The pH was around 4.63–4.77, indicating that the SLN system was a weak acid. Design-Expert® software was used to design the responses of all model formulations and to select the optimized formulation. The optimal formulation comprised 0.190 g Sa, 0.048 g Pa, and 0.002 g Ma. The experimental values of the particle size and PDI of the optimal formulation did not differ significantly from the predicted values and lay within a 95% confidence interval (CI). Conclusion: Therefore, the simplex centroid design using fatty acids could efficiently formulate and optimize FZ-loaded SLNs.


Sign in / Sign up

Export Citation Format

Share Document