Anti-Inflammatory and Gastroprotective Properties of Aspirin - Entrapped Solid Lipid Microparticles

Author(s):  
Salome A. Chime ◽  
Paul A. Akpa ◽  
Cosmas C. Ugwuanyi ◽  
Anthony A. Attama

Background: Aspirin is a nonsteroidal anti-inflammatory drug that is very effective in the treatment of inflammation and other health conditions, however, it causes gastric irritation. Recently, researchers have developed patents (US9757529, 2019) of inhalable aspirin for rapid absorption and circumvention of gastric irritation. Objective: The aim of this work was to formulate aspirin-loaded lipid based formulation in order to enhance oral bioavailability and inhibit gastric irritation. Methods: This solid lipid microparticles loaded with aspirin (SLM) was formulated by a modified cold homogenization-solvent evaporation method. In vitro studies such as in vitro drug release, particle size, Encapsulation Efficiency (EE), micromeritic properties and loading capacity were carried out. Pharmacodynamics studies such as anti-inflammatory and ulcerative properties of the SLM were also carried out in Wistar rats. Results: The results showed that aspirin entrapped SLM exhibited the highest EE of 72% and particle size range of 7.60 + 0.141µm to 20.25 + 0.070µm. Formulations had about 55% drug release at 6h in simulated intestinal fluid pH 6.8. The formulations had good flowability that could facilitate filling into hard gelatin capsule shells. The SLM exhibited 100% gastroprotection against aspirin-induced ulcers (p < 0.05). The percentage of anti-inflammatory activities also showed that aspirin-entrapped SLM had 78% oedema inhibition at 7h, while the reference had 68% inhibition at 7h. Conclusion: Aspirin-entrapped SLM showed good sustained-release properties, enhanced antiinflammatory properties and total gastric protection from aspirin-induced ulcers and could be used as once-daily oral aspirin.

2020 ◽  
Vol 11 (4) ◽  
pp. 6739-6747
Author(s):  
Amin Mir M ◽  
Muhammad Waqar Ashraf ◽  
Maythem Mahmud

Solid lipid microparticles reach the site of its action in a controlled rate and do show controlled release for a better therapeutic result. A good drug carrying and release system involve a controlled drug delivery that improves bioavailability, to enrich stability and to minimise the toxic effects followed with a targeted drug at the site of its action. The solid lipid microparticles of curcumin were prepared in a view to achieving high permeability of curcumin in the brain through blood-brain-barrier. The lipid microsphere solids were prepared by hot melts microencapsulation technique to formulate solid lipid microspheres. Twelve lipid formulations were prepared with varying concentration of surfactants (span 40, span 70, span 90 and Tween 100). The developed formulation was subjected to various parameters such as the particle size, % entrapment efficiencies, yield productions, % cumulative release, percentage yield and drug loading, based upon highest entrapment efficiency, drug release and % cumulative release, the F3 formulation was considered as the best formulation. The prepared microsphere was subjected to different evaluation parameters such as thin-layer chromatography, melting point, FTIR, solubility, compatibility study and In-vitro drug release. The developed formulation shows spherical and smooth surface. The percentage release of drug F3 formulation has been found highest of about 86.23% after 12 hr.


Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 870 ◽  
Author(s):  
Clara López-Iglesias ◽  
Cristina Quílez ◽  
Joana Barros ◽  
Diego Velasco ◽  
Carmen Alvarez-Lorenzo ◽  
...  

The delivery of bioactive agents using active wound dressings for the management of pain and infections offers improved performances in the treatment of wound complications. In this work, solid lipid microparticles (SLMPs) loaded with lidocaine hydrochloride (LID) were processed and the formulation was evaluated regarding its ability to deliver the drug at the wound site and through the skin barrier. The SLMPs of glyceryl monostearate (GMS) were prepared with different LID contents (0, 1, 2, 4, and 10 wt.%) using the solvent-free and one-step PGSS (Particles from Gas-Saturated Solutions) technique. PGSS exploits the use of supercritical CO2 (scCO2) as a plasticizer for lipids and as pressurizing agent for the atomization of particles. The SLMPs were characterized in terms of shape, size, and morphology (SEM), physicochemical properties (ATR-IR, XRD), and drug content and release behavior. An in vitro test for the evaluation of the influence of the wound environment on the LID release rate from SLMPs was studied using different bioengineered human skin substitutes obtained by 3D-bioprinting. Finally, the antimicrobial activity of the SLMPs was evaluated against three relevant bacteria in wound infections (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). SLMPs processed with 10 wt.% of LID showed a remarkable performance to provide effective doses for pain relief and preventive infection effects.


2019 ◽  
Vol 7 (5) ◽  
pp. 389-403 ◽  
Author(s):  
Ritika Kondel ◽  
Nusrat Shafiq ◽  
Indu P. Kaur ◽  
Mini P. Singh ◽  
Avaneesh K. Pandey ◽  
...  

Background: Acyclovir use is limited by a high frequency of administration of five times a day and low bioavailability. This leads to poor patient compliance. Objectives: To overcome the problem of frequent dosing, we used nanotechnology platform to evaluate the proof of concept of substituting multiple daily doses of acyclovir with a single dose. Methods: Acyclovir was formulated as solid lipid nanoparticles (SLN). The nanoparticles were characterized for particle size, surface charge and morphology and in vitro drug release. The pharmacokinetic and pharmacodynamic of SLN acyclovir were compared with conventional acyclovir in a mouse model. Results: SLN showed drug loading of 90.22% with 67.44% encapsulation efficiency. Particle size was found to be of 131 ± 41.41 nm. In vitro drug release showed 100% release in SIF in 7 days. AUC0-∞ (119.43 ± 28.74 μg/ml h), AUMC0-∞ (14469 ± 4261.16 μg/ml h) and MRT (120.10 ± 9.21 h) were significantly higher for ACV SLN as compared to ACV AUC0-∞ (12.22 ± 2.47 μg/ml h), AUMC0-∞ (28.78 ± 30.16 μg/ml h) and MRT (2.07 ± 1.77 h), respectively (p<0.05). In mouse model, a single dose of ACV SLN was found to be equivalent to ACV administered as 400mg TID for 5 days in respect to lesion score and time of healing. Conclusion: The proof of concept of sustained-release acyclovir enabling administration as a single dose was thus demonstrated.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


Sign in / Sign up

Export Citation Format

Share Document