scholarly journals Impact of Imidacloprid Seed Dressing Treatment on Soil Microorganisms and Enzyme Activities in the Maize Rhizosphere

2016 ◽  
Vol 10 (1) ◽  
pp. 266-271 ◽  
Author(s):  
Yanbing Wu ◽  
Junjun Zhao ◽  
Zhenmin Yan ◽  
Yinghui Zhu

Under the field conditions, effects of imidacloprid seed dressing treatment on soil culturable microorganisms and enzyme activities in maize rhizosphere were studied. The results showed that the microbial populations for bacteria, actinomycetes and fungi in maize rhizosphere after imidacloprid treatments were lower than control. The bacteria and actinomycetes populations showed a trend of decreasing after increasing with the maize growth from the seedling stage to the maturity stage, and the fungi populations decreased with the maize growth. The urease activities of maize rhizosphere soil from different treatments showed a trend of initially increasing after decreasing, then decreasing. The invertase activities of maize rhizosphere soil from different treatments showed a trend of decreasing after increasing, and the peak value occurred at flowering stage. With the imidacloprid application, the invertase activities had been stimulated. The results may provide theoretical basis for rational seed dressing treatment.

2020 ◽  
Author(s):  
Yingdan Yuan ◽  
Mengting Zu ◽  
Lei Liu ◽  
Xiaomei Song

Abstract Background: Dendrobium is a precious herbal belongs to Orchid and widely used as health care traditional Chinese medicine in Asia. Although orchids are mycorrhizal plants, most researches still focus on endophytes, and there is still large unknown in rhizosphere microorganisms. In order to investigate the rhizosphere microbial community of different Dendrobium species during the maturity stage, we used high-throughput sequencing to analyze microbial community in rhizosphere soil during maturity stage of three kinds of Dendrobium species.Results: In our study, a total of 240,320 sequences and 11,179 OTUs were obtained from these three Dendrobium species. According to the analysis of OTU annotation results, different Dendrobium rhizosphere soil bacteria include 2 kingdoms, 63 phyla, 72 classes, 159 orders, 309 families, 850 genera and 663 species. Among all sequences, the dominant bacterial phyla (relative abundance > 1%) were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, Firmicutes, Verrucomicrobia, Planctomycetes, Chloroflexi, Gemmatimonadetes. We analyzed the environmental factors of the growth of Dendrobium and found that the environmental factor that affects the rhizosphere soil microorganisms of Dendrobium is the soil factor. Among them, soil factors most closely related to the influence of Dendrobium rhizosphere soil microorganisms include total nitrogen, available phosphorus, ammonium nitrogen and pH value.Conclusions: We found that the rhizosphere bacterial communities of the three kinds of Dendrobium have significant differences, and the main species of rhizosphere microorganisms of Dendrobium are concentrated in the Proteobacteria, Actinobacteria, Bacteroidetes. Moreover, the smaller the level of bacterial, the greater the difference among Dendrobium species. Soil is the most important environmental factor affecting the bacterial communities in the rhizosphere soil of Dendrobium. These results fill the gap in the rhizosphere microbial community of Dendrobium and provide a theoretical basis for the subsequent mining of microbial functions and the study of biological fertilizers.


2020 ◽  
Vol 12 (23) ◽  
pp. 10095
Author(s):  
Yunke Qu ◽  
Jie Tang ◽  
Zhaoyang Li ◽  
Zihao Zhou ◽  
Jingjing Wang ◽  
...  

Western Jilin province has the most serious area of soda salinization in Northeast China, which affects and restricts the sustainable development of agriculture. The effects of physico-chemical properties of rhizosphere and non-rhizosphere soil on soil microbial diversity and enzyme activities (polyphenol oxidase, catalase, invertase, amylase) were evaluated in typical soda saline-alkali paddy field. Community-level physiological profile (CLPP) based on Biolog-ECO plates was used to assess the functional diversity of soil microorganisms. Exchangeable sodium percentage (ESP) and pH were negative correlated with the microbial activity (AWCD), soil enzyme activities (amylase, sucrose, and catalase, except for polyphenol oxidase) in rice rhizosphere and non-rhizosphere soil (P < 0.05). The indexes of microbial diversity in rice rhizosphere soil were significantly higher than that of non-rhizosphere soil. The utilization of amino acids by rice rhizosphere microorganisms was relatively high, while non-rhizosphere soil had relatively high utilization of carboxylic acid, phenolic acid, and amine. Among the selected physico-chemical properties, soil organic carbon (SOC) and soil water content (SWC) had the greatest influence on the variation of microbial diversity indexes and enzyme activities in rhizosphere soil. ESP and pH showed a significant positive correlation with carbon source utilization, especially for amine (AM) and phenolic acid (PA) carbon source utilization (P < 0.05) by means of RDA, and the utilization rate of AM and PA carbon sources by rice rhizosphere and non-root soil microorganisms was P1 < P2 < P3.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jie Chen ◽  
Wenping Yang ◽  
Jin Li ◽  
Sumera Anwar ◽  
Kai Wang ◽  
...  

Studying the effects of herbicides on microbial community and urease activity in the rhizosphere soil of maize is helpful to clarify the mechanisms herbicides used to affect soil microbial environment. In this research, four common preemergence maize specific herbicides, nicosulfuron+atrazine (A1), alachlor+acetochlor+atrazine (A2), propisochlor+atrazine (A3), and acetochlor+atrazine (A4), were selected to use in a pot trial. A preemergence herbicide nonspecific for maize, dinitraniline (A0), was used as the positive control, whereas water instead of herbicide was considered as the negative control (CK). At the maturity stage, the microbial communities and urease activity in the 0-20 cm, 20-40 cm, and 40-60 cm rhizosphere soils of maize were analyzed. Results showed that A0 dramatically suppressed maize growth, with no grain got finally, while A1 displayed the weakest effect. The tested herbicides affected the microbial community in the 0-20 cm layer greater than in the 20-60 cm ones, with A1 displaying the greatest effect. In the 0-20 cm soil, A1 largely reduced the relative abundance of the top three dominant genera, Prevotella, Barnesiella, and Lactobacillus in the CK soil, by 99.0%, 98.7%, and 79.2%, and made Pseudomonas, Gemmatimonas, and Sphingomonas became the new dominant genera, while A2 and A3 displayed similar but slighter effects. All herbicides dramatically reduced the relative abundance of the top one dominant fungal phylum (Ascomycota) and genus (Diatrype) in the CK soil, from 45% to 5.2%-7.9% and 42% to 2.1%-3.2%. A0 dramatically dropped the urease activity in the 0-60 cm soils, by 30.5%-33.1%, whereas A1-A4 displayed an unsignificant effect. In conclusion, A1 is a suitable herbicide for maize. Both the bacterial community and urease activity in the 0-20 cm rhizosphere soil are suitable indices to evaluate the effects of preemergence herbicides on maize growth and soil microbial environment.


2013 ◽  
Vol 38 (2) ◽  
pp. 173-176 ◽  
Author(s):  
Yong-hong HUANG ◽  
Shun LÜ ◽  
Chun-yu LI ◽  
Yue-rong WEI ◽  
Gan-jun YI

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3684-3698
Author(s):  
Xilin Ning ◽  
Xiaohui Wang ◽  
Zheyun Guan ◽  
Yan Gu ◽  
Chunsheng Wu ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 537-542
Author(s):  
I. J. VERMA ◽  
H. P. DAS ◽  
V. N. JADHAV

In this study, ET data available on Soybean crop for Bhopal during 1991-95 have been utilized.  With regard to water need of the crop, the life span of soybean has been divided into five important growth stages viz., seedling up to 2 weeks after sowing (WAS), vegetative (3-8 WAS), flowering (9-10 WAS), pod development (11-13 WAS), and maturity (14-15 WAS). In this paper, consumptive use of water (ET), Water Use Efficiency (WUE), Heat Units (HU), Heat Use Efficiency (HUE) and crop coefficient (Kc) for different growth stages of the crop have been computed and discussed.                The study revealed that on an average, Soybean crop consumed about 450 mm of water. The average WUE was found to be 3.23 kg /ha/mm. It was also observed that WUE does not depend only on the total amount of water consumed by the crop but also indicates the importance of its distribution during various growth stages. On an average, the crop consumed nearly 7%, 36%, 24%, 25% and 8% of water during seedling, vegetative, flowering, pod development and maturity stage respectively. The crop consumed maximum amount of water during vegetative stage. However, the average weekly ET rate was found to be highest during flowering stage (nearly 52 mm). Average heat unit requirement of soybean was found to be 1694 degree-days. Maximum heat units were required during vegetative stage (638 degree days) followed by pod development stage (358 degree days). The average HUE was found to be 0.86 kg/ha/degree days. Crop coefficient (Kc) values varied in the range 0.30 – 0.45, 0.55 – 0.90, 1.00 – 1.15, 0.85 – 0.70 and 0.55 – 0.40 during seedling, vegetative, flowering, pod development and maturity stage respectively. The crop coefficient values attained the peak during the flowering stage.  


Author(s):  
Yuan Zhao ◽  
Xiao–Meng Qin ◽  
Xue–Ping Tian ◽  
Tao Yang ◽  
Rong Deng ◽  
...  

Abstract Background Pinellia ternata (Thunb.) Breit. is a commonly used herb in traditional Chinese medicine, and the main raw material of various Chinese patent medicines. Continuous cropping obstacle (CCO) is the main factor leading to the decline of crop yields and quality. Methods Metagenomics sequencing technology was used to analyze the microbial community and functional genes of continuous cropping (CC) and control (CK) soils of P. ternata. In addition, differences in physicochemical properties, enzyme activities, microbial community composition and the abundance of functional genes in CC and CK were evaluated, as well as the relationship between these factors and CCO. Results Results indicated that CC of P. ternata led to the decline of rhizosphere soil pH, nutrient imbalance and enzyme activity reduction. Metagenomic analysis indicted that CC also changed the composition of the microbial community, causing an increase in the relative abundance of pathogenic microorganisms such as Fusarium, Klebsiella oxytoca and Pectobacterium carotovorum in the P. ternata rhizosphere. The relative abundance of potentially beneficial Burkholderia and Bradyrhizobium was recorded to decrease. Results also showed that there were considerable differences in CC and CK about the abundances of functional genes related to soil enzymes and the degradation of P. ternata allelochemicals, as well as the microbial groups which they belong. These results clarified the effects of CC on the microbial community structure and functional genes of soil. In addition, Burkholderia and Bradyrhizobium might play important roles in enhancing soil fertility and reducing the toxicity of phenolic acids in rhizosphere soil. Conclusions CC of P. ternata changed the physicochemical properties, microbial community and functional genes of rhizosphere soil. Burkholderia and Bradyrhizobium for enhancing soil fertility and reducing the toxicity of phenolic acids might be potentially beneficial. These results provide theoretical guidance for bioremediation of CCO soil of P. ternata and other staple crops. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document