scholarly journals Water and heat unit requirement in different growth stages of Soybean (Glycine max L. Merrill) at Bhopal

MAUSAM ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 537-542
Author(s):  
I. J. VERMA ◽  
H. P. DAS ◽  
V. N. JADHAV

In this study, ET data available on Soybean crop for Bhopal during 1991-95 have been utilized.  With regard to water need of the crop, the life span of soybean has been divided into five important growth stages viz., seedling up to 2 weeks after sowing (WAS), vegetative (3-8 WAS), flowering (9-10 WAS), pod development (11-13 WAS), and maturity (14-15 WAS). In this paper, consumptive use of water (ET), Water Use Efficiency (WUE), Heat Units (HU), Heat Use Efficiency (HUE) and crop coefficient (Kc) for different growth stages of the crop have been computed and discussed.                The study revealed that on an average, Soybean crop consumed about 450 mm of water. The average WUE was found to be 3.23 kg /ha/mm. It was also observed that WUE does not depend only on the total amount of water consumed by the crop but also indicates the importance of its distribution during various growth stages. On an average, the crop consumed nearly 7%, 36%, 24%, 25% and 8% of water during seedling, vegetative, flowering, pod development and maturity stage respectively. The crop consumed maximum amount of water during vegetative stage. However, the average weekly ET rate was found to be highest during flowering stage (nearly 52 mm). Average heat unit requirement of soybean was found to be 1694 degree-days. Maximum heat units were required during vegetative stage (638 degree days) followed by pod development stage (358 degree days). The average HUE was found to be 0.86 kg/ha/degree days. Crop coefficient (Kc) values varied in the range 0.30 – 0.45, 0.55 – 0.90, 1.00 – 1.15, 0.85 – 0.70 and 0.55 – 0.40 during seedling, vegetative, flowering, pod development and maturity stage respectively. The crop coefficient values attained the peak during the flowering stage.  

2015 ◽  
Vol 2 (2) ◽  
pp. 197-206
Author(s):  
Monira Khatun ◽  
Partha Biswas ◽  
Md Moudud Hasan ◽  
Nazmun Nahar Karim ◽  
MG Mostofa Amin

Efficient use of water is essential for sustainable crop production and achieving food security especially where water is a scarce resource. A study was conducted at a farmer’s field near Rahmatpur, Mymensingh, Bangladesh during November 2012– February 2013 to study the effect of irrigation on the yield and yield attributes of three newly developed mustard varieties, namely Binasarisha-7 (Brassica juncea L), Binasarisha-8 (Brassica juncea L), and Binasarisha-4 (Brassica napus L). The experimental soil was silty clay with a bulk density of 1.43 g cm-3. There were four irrigation treatments (T1: no irrigation; T2: irrigation at vegetative stage; T3: irrigation at flowering stage; T4: irrigation at vegetative and flowering stage), each replicated three times in a split plot design. Irrigation showed significant effect on the yield attributes of the mustard varieties. The highest yield of 1.43 t ha-1 (46% higher over control) was obtained in treatment T4 of variety Binasarisha-7. The lowest yield of 0.63 t ha-1 was obtained in treatment T1 (control) of variety Binasarisha-4. For producing seed yield Binasarisha-4 was the most responsive to the irrigation treatments (T2–T4). In contrast, the yield differences among the stage-wise irrigation treatments (T2–T4) were not statistically significant for Binasarisha-8. The highest water use efficiency of 0.48 t ha-1 cm-1 was obtained in treatment T1 and the lowest of 0.28 t ha-1 cm-1 was in treatment T4. For cultivation of the mustard varieties Binasarisha-4, Binasarisha-7 and Binasarisha-8 in this type of climate, irrigation at vegetative and flowering stage may be recommended to produce higher yield.Res. Agric., Livest. Fish.2(2): 197-206, August 2015


MAUSAM ◽  
2022 ◽  
Vol 46 (2) ◽  
pp. 181-186
Author(s):  
H.P. DAS ◽  
A. CHOWDHURY ◽  
S. B. GAONKAR

 Based on the data for the period from 1977 to 1992 during the kharif season. mean weekly evapotranspiration (ET) and its contribution for different phases to total evaporative loss have been worked out for kharif rice at Canning. The evapotranspiration-evaporation ratio (ET/EP) and crop coefficient (Kc) have been round to attain peak values during the flowering stage. A relationship between ET/EP and number of days from transplanting has been developed and this relationship helps in detero\ining ET from a knowledge of EP and date of transplanting. Ratio of evapotranspiration to total shortwave radiation (ET/R2) which represents the combined effect of energy balance components. also reaches its peak value during the flowering stage. Among the four different energy summation indices. the potential evapotranspiration seems to be a better parameter for identification of growth stages of the crop. Water use efficiency of kharif rice shows significant year-to-year variations.  


2014 ◽  
Vol 1010-1012 ◽  
pp. 662-665
Author(s):  
Mu Qiu Zhao ◽  
Ming Li ◽  
Yun Feng Shi

Large annual herbaceous plants such as banana (Musa spp.) have a very impressive carbon (C) storage and carbon dioxide (CO2) sequestration in agroecosystems, and play a certain role in global C cycle, climate regulation and reducing global warming. In this paper, we systematically studied C storage on the different growth stages, CO2sequestration and distribution, and mathematical models for predicting CO2sequestration by bananas which were planted in western Hainan island, China. The results showed that C content of dry matter in different structures of banana plants was 45-50% in line with the current results, and in fruit reached the highest, in stems and roots followed, while that in leaves were the lowest. C storage in different structures of banana plants increased exponentially during banana growing process (vegetative growth and bud stage), stems were the major storage structures of C, and roots and leaves also had considerable C storage. C fixed by banana plants was mainly distributed in fruit at fruit growing stage. CO2sequestration was 16.3, 41.1 and 80.0t/ha at vegetative growth, bud and fruit maturity stage separately, and power function model can be applied with stem diameter (D) or composite parameter (D2H) as independent variables to predict.


Author(s):  
Bhagawan Bharali ◽  
Zafar Ullah ◽  
Bhupendra Haloi ◽  
Jayashree Chutia ◽  
Sonbeer Chack

In a field trial (2012), simulated aerosols: NH4Cl (reduced) and NaNO2 (oxidised) @ 10 & 20 kg ha-1y-1 (˜ 100 ppm & ˜ 200 ppm respectively), 1000 cm3m-2 of each along with a control were misted to population of Kufri Jyoti at different growth stages viz., vegetative (10-60 DAS), tuber initiation (60-90 DAS) and tuber bulking >90DAS). The higher dose of aerosols lowered nitrate reductase activity, nitrogen use efficiency, cell membrane stability, tuber yield, but increased photosynthesis, peroxidise activity significantly. The mechanisms of injury in terms of higher peroxidase activity and lower membrane stability of leaf cells have been elucidated. Foliar feeding of nitrogenous pollutant in the form of aerosols to plants at juvenile stage is important in addition to basal use of recommended fertilizers.


2020 ◽  
Vol 126 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Xiaohua Qi ◽  
Hirokazu Takahashi ◽  
Yasushi Kawasaki ◽  
Yuya Ohta ◽  
Masahide Isozaki ◽  
...  

Abstract Background and Aims Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. Methods Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. Key results Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δ 2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. Conclusions These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.


2014 ◽  
Vol 12 (1) ◽  
pp. 103-110 ◽  
Author(s):  
SS Siddique ◽  
MKA Bhuiyan ◽  
R Momotaz ◽  
GMM Bari ◽  
MH Rahman

An experiment was conducted at Microbiology Laboratory of Plant Pathology Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) during 2007 to determine the virulence and variation in symptom development by Fusarium oxysporum f. sp. phaseoli isolates at different growth stages such as emergence and early vegetative stage, branching and rapid vegetative growth stage and early flowering stage of Bush bean, and in-vitro control of the pathogen with the selected fungicides. Eight isolates of this pathogen were collected from different pathology laboratory of BARI, BAU and BSMRAU. IS3 isolate collected from Bushbean seeds were found most virulent in pathogenicity test such as pre-emergence mortality, root rot, root lesion, leaf yellowing and wilting when this isolate was inoculated at different growth stages of bush bean. Four fungicides such as Vitavax, Rovral, Cupravit and Aimcozim were evaluated invitro to test the efficacy against isolate IS3. Aimcozim at different concentration (50-400 ppm) was found most effective in in-vitro evaluation. DOI: http://dx.doi.org/10.3329/agric.v12i1.19865 The Agriculturists 2014; 12(1) 103-110


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4937 ◽  
Author(s):  
Ziqing Xia ◽  
Yiping Peng ◽  
Shanshan Liu ◽  
Zhenhua Liu ◽  
Guangxing Wang ◽  
...  

This study proposes a method for determining the optimal image date to improve the evaluation of cultivated land quality (CLQ). Five vegetation indices: leaf area index (LAI), difference vegetation index (DVI), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI) are first retrieved using the PROSAIL model and Gaofen-1 (GF-1) images. The indices are then introduced into four regression models at different growth stages for assessing CLQ. The optimal image date of CLQ evaluation is finally determined according to the root mean square error (RMSE). This method is tested and validated in a rice growth area of Southern China based on 115 sample plots and five GF-1 images acquired at the tillering, jointing, booting, heading to flowering, and milk ripe and maturity stage of rice in 2015, respectively. The results show that the RMSEs between the measured and estimated CLQ from four vegetation index-based regression models at the heading to flowering stage are smaller than those at the other growth stages, indicating that the image date corresponding with the heading to flowering stage is optimal for CLQ evaluation. Compared with other vegetation index-based models, the LAI-based logarithm model provides the most accurate estimates of CLQ. The optimal model is also driven using the GF-1 image at the heading to flowering stage to map CLQ of the study area, leading to a relative RMSE of 14.09% at the regional scale. This further implies that the heading to flowering stage is the optimal image time for evaluating CLQ. This study is the first effort to provide an applicable method of selecting the optimal image date to improve the estimation of CLQ and thus advanced the literature in this field.


2002 ◽  
Vol 50 (2) ◽  
pp. 179-184
Author(s):  
P. M. Arthanari ◽  
P. Gnanamoorthy ◽  
S. Ramasamy

Field experiments were conducted at Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India during the Rabi (November 1997-March 1998) and Kharif (July 1998-November 1998) seasons to identify the effect of silicon at panicle initiation on the growth of rice plant (Variety ADT-36) at different growth stages. Furnace slag was applied as a silicon source at 2 t/ha at the panicle initiation stage along with other nutrients. The dry matter production was recorded at the active tillering, panicle initiation, booting, flowering, one week after flowering and maturity stages in both the seasons. The total dry matter production was greater in the Kharif season than in the Rabi season. The application of slag at the panicle initiation stage along with N and K at the flowering stage had a significant influence over the dry matter production. A similar trend was observed in both the seasons. The silicon uptake was recorded at the panicle initiation and maturity stages. About 30-40% of the silicon absorbed during the early stages and the maturity stage was present in the shoot, whereas 20-30 % of the silicon absorbed during the maturity stages was present in the leaf blades. Based on the results, it is concluded that the supply of silicon during the panicle initiation stage is most important for plant growth.


Sign in / Sign up

Export Citation Format

Share Document