scholarly journals The Effect of Curing Pressure on Shear Bond Strength of Zirconia to Resin Cement

2021 ◽  
Vol 15 (1) ◽  
pp. 410-416
Author(s):  
Pailin Petkosit ◽  
Sasiwimol Sanohkan

Background: Nowadays, the esthetics demand is continuously increasing; therefore, metal-free materials are widely used, like a zirconia-based ceramic, which is conveniently fabricated via computer-aided design and computer-aided manufacturing (CAD/CAM) system for restorations from single to full mouth rehabilitation. Objective: This study evaluated the effect of pre-curing pressure on the shear bond strength of zirconia to the resin cement. Methods: A total of sixty-three sandblasted cylindrical zirconia mounted in autopolymerizing resin were randomly assigned to three groups; Group 1: no treatment (control), Group 2: negative pressure, and Group 3: positive pressure to resin cement after resin cement application and resin composite columns bonded to zirconia. Thirty-three of the samples were stored in distilled water at 37 °C for 24 hr before the shear bond strength test for thirty samples and three samples were cross-sectionally cut for interfacial observation with FESEM. Another thirty samples were thermocycled for 5,000 cycles in distilled water at 5°C to 55 °C before testing. The shear bond strength and failure mode were evaluated. Examination of the bonding interface was also done. Results: The results were analyzed using two-way ANOVA. The means of shear bond strength of non-thermocycle of the control group were 8.01 ±1.74 MPa, 9.10 ±1.90 MPa, and 9.14 ±2.58 MPa, whereas that of thermocycle group were 5.71 ±0.84 MPa, 5.53 ±0.68 MPa, and 5.68 ±0.77 MPa in zero pressure group, negative pressure group, and positive pressure group, respectively. It showed no statistically significant differences in shear bond strength in all pressure groups (p > 0.05). The pre-curing pressure did not influence the shear bond strength of the zirconia and resin cement. Conclusion: There was no difference in the shear bond strength between the pressure groups and the no treatment control group. The positive and negative pressure did not influence the shear bond strength of the zirconia and resin cement.

2011 ◽  
Vol 05 (04) ◽  
pp. 373-379 ◽  
Author(s):  
Subutay Han Altintas ◽  
Onjen Tak ◽  
Asli Secilmis ◽  
Aslihan Usumez

ABSTRACTObjectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey’s HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Results: Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (P<.05). Groups that had received light-cured provisional cement showed the lowest bond strength values. Conclusions: Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable. (Eur J Dent 2011;5:373-379)


Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3321 ◽  
Author(s):  
Dae-Sung Kim ◽  
Jong-Ju Ahn ◽  
Eun-Bin Bae ◽  
Gyoo-Cheon Kim ◽  
Chang-Mo Jeong ◽  
...  

The purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP. The results showed that the SE was significantly higher in the NTP group than in the Control group (p < 0.05). For the SBS test, in non-thermocycling, the NTP group of both self-adhesive resin cements showed significantly higher SBS than the Control group (p < 0.05). However, regardless of the cement type in thermocycling, there was no significant increase in the SBS between the Control and NTP groups. Comparing the two cements, regardless of thermocycling, the NTP group of G-CEM LinkAce showed significantly higher SBS than that of RelyX U200 (p < 0.05). Our study suggests that NTP increases the SE. Furthermore, NTP increases the initial SBS, which is higher when using G-CEM LinkAce than when using RelyX U200.


2021 ◽  
pp. 232020682110502
Author(s):  
İdris Kavut ◽  
Mehmet Uğur

Aim: The aim of this study was to evaluate the effect of calcium phosphate based desensitizing agent on shear bond strength of self-etch/adhesive resin cements to dentin. Materials and Methods: Eighty dentin specimens were prepared from freshly extracted human third molar teeth and were classified, randomly ( n = 20). Half of groups were treated with calcium phosphate based Teethmate Desensitizer and then Panavia V5, RelyX Ultimate (containing self-etch primer), Panavia SA, and RelyX U200 self-adhesive resin cements were luted to all dentin surfaces. All specimens were stored in an incubator at 37°C for 24 h. Shear bond strength was tested by a universal test machine at a 0.5 mm/min crosshead speed. The data were analyzed with a statistical program. Two-way ANOVA was used for statistical differences ( P <.05). Dentin surfaces were examined with scanning electron microscopy (SEM) at x5000 and x10000 magnifications. Results: The higher shear bond values were observed in the groups with Teethmate Desensitizer applied and cemented with self-etch (16.05 ± 6.24 and 14.73 ± 4.75), whereas the lowest bonding values were observed in the groups with self-adhesive resin cement without Teethmate Desensitizer (3.73 ± 0.77 and 5.85 ± 4.19; P <.001). As the main effect of the treatment, the bond strength was 9.39 ± 6.04 in the control group, whereas it was 13.49 ± 5.44 in the Teethmate applied groups ( P <.05) Conclusions: Calcium phosphate desensitizer did not adversely effected shear bond strength of self-etch/adhesive resin cements to dentin. It even significantly increased the shear bond strength of self-adhesive resin cements.


2013 ◽  
Vol 7 (1) ◽  
pp. 123-125 ◽  
Author(s):  
T.T. Heikkinen ◽  
J.P Matinlinna ◽  
P.K. Vallittu ◽  
L.V.J. Lassila

Objective of this study was to evaluate the effects of long term water storage and ageing on the bond strength of resin composite cement to yttria-stabilized zirconium dioxide (zirconia) and dialuminium trioxide (alumina). Substrate specimens of alumina and zirconia were air particle abraded with dialuminium trioxide before priming and application of composite resin. Priming was made with gamma metharyloxy-trimethoxysilane or acryloxypropyl-trimethoxysilane monomer after which the intermediate dimethacrylate resin was applied and photopolymerized. This was followed by curing particulate composite resin cement (Relyx ARC) to the substrate as a resin stub. The ageing methods of the specimens (n=6) were: (1) they stored four years in 37±1ºC distilled water, (2) thermocycled 8000 times between 55±1ºC and 5±1ºC, (3) stored first in water for four years and then thermocycled. Specimens which were stored dry, were used as controls. Bonding of composite resin was measured by shear-bond strength test set-up. Both thermocycling and long-term water storage decreased significantly shear bond strength values compared to the control group (from the level of 20 MPa to 5 MPa) regardless of the used primer or the type of the substrate. Combination of four years water storage and thermocyling reduced the bond strength even more, to the level of two to three megapascals. In can be concluded that water storage and thermocycling itselves, and especially combination of water storage and thermocycling can cause considerable reduction in the bond strength of composite resin cement to alumina and zirconia.


2015 ◽  
Vol 40 (3) ◽  
pp. E112-E121 ◽  
Author(s):  
HA St Germain ◽  
TH St Germain

SUMMARY In this laboratory research, shear bond strength (SBS) and mode of failure of veneers rebonded to enamel in shear compression were determined. Three groups (A, B, and C; n=10 each) of mounted molar teeth were finished flat using wet 600-grit silicon carbide paper, and 30 leucite-reinforced porcelain veneers (5.0 × 0.75 mm) were air abraded on the internal surface with 50 μm aluminum oxide, etched with 9.5% hydrofluoric acid, and silanated. The control group (A) veneer specimens were bonded to enamel after etching with 37% phosphoric acid using bonding resin and a dual cure resin composite cement. Groups B and C were prepared similarly to group A with the exception that a release agent was placed before the veneer was positioned on the prepared enamel surface and the resin cement was subsequently light activated. The debonded veneers from groups B and C were placed in a casting burnout oven and heated to 454°C/850°F for 10 minutes to completely carbonize the resin cement and stay below the glass transition temperature (Tg) of the leucite-reinforced porcelain. The recovered veneers were then prepared for bonding. The previously bonded enamel surfaces in group B were air abraded using 50 μm aluminum oxide followed by 37% phosphoric acid etching, while group C enamel specimens were acid etched only. All specimens were thermocycled between 5°C and 55°C for 2000 cycles using a 30-second dwell time and stored in 37°C deionized water for 2 weeks. SBS was determined at a crosshead speed of 1.0 mm/min. SBS results in MPa for the groups were (A) = 20.6±5.1, (B) = 18.1±5.5, and (C) = 17.2±6.1. One-way analysis of variance indicated that there were no significant interactions (α=0.05), and Tukey-Kramer post hoc comparisons (α=0.05) detected no significant pairwise differences. An adhesive mode of failure at the enamel interface was observed to occur more often in the experimental groups (B = 40%, C = 50%). Rebonding the veneers produced SBS values that were not significantly different from the control group. Also, no significant difference in SBS values were observed whether the debonded enamel surface was air abraded and acid etched or acid etched only.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Soo Ahn ◽  
Young-Ah Yi ◽  
Yoon Lee ◽  
Deog-Gyu Seo

Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement.Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n=10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P<0.05).Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P<0.05).Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements.


2011 ◽  
Vol 82 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Rengin Attin ◽  
Bogna Stawarczyk ◽  
Defne Keçik ◽  
Michael Knösel ◽  
Dirk Wiechmann ◽  
...  

Abstract Objective: To compare the influence of demineralized and variously pretreated demineralized enamel on the shear bond strength of orthodontic brackets. Materials and Methods: Sixty bovine enamel specimens were allocated to five groups (n  =  12). Specimens of group 1 were not demineralized and were not pretreated, but served as controls. The other specimens were demineralized to form artificial carious lesions. Samples from group 2 were only demineralized and were kept untreated in artificial saliva. The other samples were pretreated with highly concentrated fluoride preparations (group 3: Elmex Gelee, 1.23% F; group 4: Clinpro White Varnish, 2.23% F) or with an infiltrating resin (group 5: Icon). After respective pretreatments, brackets were adhesively fixed on all specimens with an adhesive system after etching with 35% phosphoric acid and application of a primer and bracket resin cement (Transbond XT). Bracket shear bond strength was evaluated with a universal testing machine. Statistical analysis was performed by one-way analysis of variance followed by a post-hoc Scheffé test. Results: Shear bond strength in control group 1 was statistically significantly greater compared with that in all other groups. Application of the infiltrating resin Icon (group 5) as pretreatment resulted in statistically significantly greater bond strength as compared with pretreatments with fluoride compounds (groups 3 and 4) and treatment provided without pretreatment (group 2). Groups 2, 3, and 4 did not significantly differ from each other. Conclusion: Pretreatment with the infiltrating resin is a beneficial approach to increasing the shear bond strength of brackets to demineralized enamel.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Menna Ahmed ElGendy ◽  
Ihab Mosleh ◽  
Hanaa Zaghloul

Objective: the purpose of the study was to evaluate the micro-shear bond strength of different cements to translucent zirconia before and after thermocycling aging. Material and methods: Twelve translucent zirconia ceramic discs were used in the study. Specimens were sandblasted using 50 ‎μm aluminum oxide (Al2O3) particles. The specimens were divided into three groups (n = 4) according to the cement type: Panavia resin cement (control group), resin modified glass ionomer (RMGI), and Activa bioactive cement. Each group was further sub-divided into two equal subgroups (n = 2) according to whether the specimens were subjected to thermocycling or not. Thermocycling was performed in distilled water at 5000 cycles between 5 oC - 55 oC. The micro-shear bond strength test (μSBS) was measured using universal testing machine. Kruskal-Wallis test was used to compare between the three cements. Dunn’s test was used for pair-wise comparisons when Kruskal-Wallis test is significant. Mann-Whitney U test was used to compare between micro-shear bond strength before and after thermocycling P ≤ 0.05. Results: In non-aged subgroups, there was no significant difference between Panavia and Activa; both showed significantly the highest mean μSBS values (22.9 MPa, 31.3 MPa respectively). While, RMGI showed the lowest μSBS values (4.7 MPa).  In thermocycled subgroups, Panavia showed significantly the highest mean μSBS values (32.2 MPa). There was no significant difference between RMGI and Activa; both showed the lowest significant mean μSBS values (3.2 MPa and 8.7 MPa respectively). Conclusions: RMGI and Activa couldn’t be considered long-term reliable materials for cementing zirconia. However, Panavia provided the most durable bond to zirconia.KEYWORDSBioactive cement; Micro-shear bond strength; Resin cement; Translucent zirconia.


2012 ◽  
Vol 06 (01) ◽  
pp. 063-069 ◽  
Author(s):  
Boonlert Kukiattrakoon ◽  
Kewalin Thammasitboon

ABSTRACTObjectives: This in vitro study evaluated the shear bond strength (SBS) of resin composite to feldspathic porcelain after acidulated phosphate fluoride (APF) gel treatment over different periods of timeMethods: One hundred and fifty-six feldspathic specimens were divided into 12 groups. Group C received no treatment (control group). Groups APF1 through APF10, ten experimental groups, were treated with 1.23% APF gel. Each group obtained 1 to 10 minutes of etching time in 1 minute increments, respectively. Group HF2 was treated with 9.6% hydrofluoric acid (HF) for 2 minutes. All specimens were then bonded to a resin composite cylinder using Adper Scotchbond Multi-purpose (3M ESPE) after silane (Monobond-S, Ivoclar Vivadent AG) application. Specimens were stored at 37ºC for 24 hours before the SBS was performed and were recorded in MPa at fracture. Data were analyzed using one-way ANOVA and Tukey’s test (α=.05)Results: HF etching yielded the highest SBS (18.0 ± 1.5 MPa), which was not significantly different from APF gel etching for 6 to 10 minutes (16.0 ± 2.1 to 17.2 ± 1.6 MPa) (P>.05)Conclusions: APF gel etching for 6 minutes might be used as an alternative etchant to HF acid for bonding resin composite to silanized feldspathic porcelain. (Eur J Dent 2012;6:63-69)


Sign in / Sign up

Export Citation Format

Share Document