scholarly journals Personal Exposure to Air Pollution for Various Modes of Transport in Auckland, New Zealand

2012 ◽  
Vol 6 (1) ◽  
pp. 84-92 ◽  
Author(s):  
K. N. Dirks ◽  
P. Sharma ◽  
J. A. Salmond ◽  
S. B. Costello

This paper investigates the carbon monoxide (CO) doses received while commuting by different modes (car, bus, train, motorcycle, bicycle and running), taking into account the commute time as well as the level of physical activity required. While the participants were constrained to travel at specific peak traffic times and between designated start and end points, they were free to choose a route appropriate for their mode of transport. The results of this study suggest that the lowest exposures (concentrations of pollutants) are experienced by train commuters, largely a reflection of the routes being removed from any significant road traffic. Motorcyclists experienced significantly higher average concentrations as a result of high-concentration and very-short-duration peaks not seen in the traces of car and bus commuters travelling on the same road. Travel by bus along a dedicated busway was also found to be effective in reducing commuter air pollution exposure compared to travel by car on a congested stretch of motorway. The average concentrations to which cyclists and runners were exposed were found to be not significantly different for those travelling by car or bus (except when on dedicated pedestrian/cycleways). However, when the increased physical activity that is required is taken into account (leading to higher volumes of air breathed) along with the increased commuting time (especially in the case of runners), the air pollution doses (as estimated by the product of the concentration, commute time and breathing factor) were found to be significantly higher than for the motorised modes. The results suggest that separate pedestrian/cycleways go some way towards providing healthier options for cyclists and pedestrians.

Author(s):  
David Rojas-Rueda

Background: Bicycling has been associated with health benefits. Local and national authorities have been promoting bicycling as a tool to improve public health and the environment. Mexico is one of the largest Latin American countries, with high levels of sedentarism and non-communicable diseases. No previous studies have estimated the health impacts of Mexico’s national bicycling scenarios. Aim: Quantify the health impacts of Mexico urban bicycling scenarios. Methodology: Quantitative Health Impact Assessment, estimating health risks and benefits of bicycling scenarios in 51,718,756 adult urban inhabitants in Mexico (between 20 and 64 years old). Five bike scenarios were created based on current bike trends in Mexico. The number of premature deaths (increased or reduced) was estimated in relation to physical activity, road traffic fatalities, and air pollution. Input data were collected from national publicly available data sources from transport, environment, health and population reports, and surveys, in addition to scientific literature. Results: We estimated that nine premature deaths are prevented each year among urban populations in Mexico on the current car-bike substitution and trip levels (1% of bike trips), with an annual health economic benefit of US $1,897,920. If Mexico achieves similar trip levels to those reported in The Netherlands (27% of bike trips), 217 premature deaths could be saved annually, with an economic impact of US $45,760,960. In all bicycling scenarios assessed in Mexico, physical activity’s health benefits outweighed the health risks related to traffic fatalities and air pollution exposure. Conclusion: The study found that bicycling promotion in Mexico would provide important health benefits. The benefits of physical activity outweigh the risk from traffic fatalities and air pollution exposure in bicyclists. At the national level, Mexico could consider using sustainable transport policies as a tool to promote public health. Specifically, the support of active transportation through bicycling and urban design improvements could encourage physical activity and its health co-benefits.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Juan Pablo Orjuela ◽  
George Northover ◽  
Shahram Heydari ◽  
Audrey de Nazelle

2015 ◽  
Vol 2 (4) ◽  
pp. 460-473 ◽  
Author(s):  
Paul Schepers ◽  
Elliot Fishman ◽  
Rob Beelen ◽  
Eva Heinen ◽  
Wim Wijnen ◽  
...  

2013 ◽  
Vol 15 (8) ◽  
pp. 1562 ◽  
Author(s):  
Kimberly Hannam ◽  
Roseanne McNamee ◽  
Frank De Vocht ◽  
Philip Baker ◽  
Colin Sibley ◽  
...  

2019 ◽  
Vol 48 (2) ◽  
pp. 117-125
Author(s):  
Amit Agarwal ◽  
Ihab Kaddoura

Bicycle is not only a sustainable mode of transport but also health benefits of bicycling due to increased physical activities are well cited. However, in urban agglomerations, on-road air pollution exposure to cyclists/pedestrians is a matter of concern which is understudied. This study proposes an approach to calculate the on-road air pollution exposure for drivers of different vehicles in an agent-based simulation framework. In the proposed approach, the breathing rate of different drivers, penetration rate, vehicle-occupancy and background concentration are taken into consideration. The approach is applied to a real-world scenario of Patna, India where non-motorized modes are in abundance. A comparison of total inhaled mass per trip for drivers of different vehicles is made and it is found that cyclists are most exposed user group. An analysis for various background concentrations for different days of the year shows that the contribution of the background concentration has a major effect on the air pollution exposure level. The outcome is spatially analyzed to identify the locations of most affected user groups mapped to their home locations. Further, the on-road air pollution exposure of business-as-usual scenario is compared with a policy case and it is found that a dedicated bicycle track can increase the exposure per trip to cyclists by 40 %.


BMJ Open ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. e030466 ◽  
Author(s):  
Hedi Katre Kriit ◽  
Jennifer Stewart Williams ◽  
Lars Lindholm ◽  
Bertil Forsberg ◽  
Johan Nilsson Sommar

ObjectivesTo conduct a health economic evaluation of a proposed investment in urban bicycle infrastructure in Stockholm County, Sweden.DesignA cost-effectiveness analysis is undertaken from a healthcare perspective. Investment costs over a 50-year life cycle are offset by averted healthcare costs and compared with estimated long-term impacts on morbidity, quantified in disability-adjusted life years (DALYs). The results are re-calculated under different assumptions to model the effects of uncertainty.SettingThe Municipality of Stockholm (population 2.27 million) committed funds for bicycle path infrastructure with the aim of achieving a 15% increase in the number of bicycle commuters by 2030. This work is based on a previously constructed scenario, in which individual registry data on home and work address and a transport model allocation to different modes of transport identified 111 487 individuals with the physical capacity to bicycle to work within 30 min but that currently drive a car to work.ResultsMorbidity impacts and healthcare costs attributed to increased physical activity, change in air pollution exposure and accident risk are quantified under the scenario. The largest reduction in healthcare costs is attributed to increased physical activity and the second largest to reduced air pollution exposure among the population of Greater Stockholm. The expected net benefit from the investment is 8.7% of the 2017 Stockholm County healthcare budget, and 3.7% after discounting. The economic evaluation estimates that the intervention is cost-effective and each DALY averted gives a surplus of €9933. The results remained robust under varied assumptions pertaining to reduced numbers of additional bicycle commuters.ConclusionInvesting in urban infrastructure to increase bicycling as active transport is cost-effective from a healthcare sector perspective.


2014 ◽  
Vol 17 (6) ◽  
pp. 553-562 ◽  
Author(s):  
Tong Gong ◽  
Catarina Almqvist ◽  
Sven Bölte ◽  
Paul Lichtenstein ◽  
Henrik Anckarsäter ◽  
...  

Background: Recent studies have reported associations between air pollution exposure and neurodevelopmental disorders in children, but the role of pre- and postnatal exposure has not been elucidated. Aim: We aimed to explore the risk for autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) among children in relation to pre- and postnatal exposure to air pollution from road traffic. Methods: Parents of 3,426 twins born in Stockholm during 1992–2000 were interviewed, when their children were 9 or 12 years old, for symptoms of neurodevelopmental disorders. Residence time-weighted concentrations of particulate matter with a diameter <10 μm (PM10) and nitrogen oxides (NOx) from road traffic were estimated at participants’ addresses during pregnancy, the first year, and the ninth year of life using dispersion modeling, controlling for seasonal variation. Multivariate regression models were used to examine the association between air pollution exposure and neurodevelopmental outcomes, adjusting for potential confounding factors. Results: No clear or consistent associations were found between air pollution exposure during any of the three time windows and any of the neurodevelopmental outcomes. For example, a 5–95% difference in exposure to NOx during pregnancy was associated with odds ratios (ORs) of 0.92 (95% confidence interval (CI): 0.44–1.96) and 0.90 (95% CI: 0.58–1.40) for ASD and ADHD respectively. A corresponding range in exposure to PM10 during pregnancy was related to ORs of 1.01 (95% CI: 0.52–1.96) and 1.00 (95% CI: 0.68–1.47) for ASD and ADHD. Conclusions: Our data do not provide support for an association between pre- or postnatal exposure to air pollution from road traffic and neurodevelopmental disorders in children.


Author(s):  
Wasif Raza ◽  
Benno Krachler ◽  
Bertil Forsberg ◽  
Johan Nilsson Sommar

We aimed to assess a possible interaction effect between physical activity and particulate air pollution exposure on recurrence of ischemic heart disease (IHD) and stroke. We followed 2221 adult participants comprising first time IHD (1403) and stroke (818) cases from the Västerbotten Intervention Program between 1 January 1990 to 31 December 2013. During mean follow-up times of 5.5 years, 428 and 156 participants developed IHD and stroke recurrence, respectively. PM2.5 concentrations above the median (5.48 µg/m3) were associated with increased risk of IHD and stroke recurrence by 13% (95% CI −17–45%) and 21% (95% CI −19–80%), respectively. These risk increases were however only observed among those that exercised at most once a week at 21% (95% CI −5–50%) and 25% (95% CI −19–90%) for IHD and stroke recurrence, respectively. Higher frequency of exercise at recruitment was positively associated with IHD and stroke recurrence but only the association with IHD recurrence among participants with low residential PM2.5 was statistically significant (96% increased risk (95%-CI 22–215%)). However, no interaction effect between physical activity and PM2.5 exposure was found. Our findings suggest that physical activity may reduce the air pollution exposure associated risk for recurrent cardiovascular disease, likely by reducing the inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document