Daily Melatonin Administration Attenuates Age-Dependent Disturbances of Cardiovascular Rhythms

2015 ◽  
Vol 9 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Denis G. Gubin ◽  
Gennady D. Gubin ◽  
Ludmila I. Gapon ◽  
Dietmar Weinert
2007 ◽  
Vol 194 (3) ◽  
pp. 637-643 ◽  
Author(s):  
M I Rodriguez ◽  
G Escames ◽  
L C López ◽  
J A García ◽  
F Ortiz ◽  
...  

Cardiac and diaphragmatic mitochondria from male SAMP8 (senescent) and SAMR1 (resistant) mice of 5 or 10 months of age were studied. Levels of lipid peroxidation (LPO), glutathione (GSH), GSH disulfide (GSSG), and GSH peroxidase and GSH reductase (GRd) activities were measured. In addition, the effect of chronic treatment with the antioxidant melatonin from 1 to 10 months of age was evaluated. Cardiac and diaphragmatic mitochondria show an age-dependent increase in LPO levels and a reduction in GSH:GSSG ratios. Chronic treatment with melatonin counteracted the age-dependent LPO increase and GSH:GSSG ratio reduction in these mitochondria. Melatonin also increased GRd activity, an effect that may account for the maintenance of the mitochondrial GSH pool. Total mitochondrial content of GSH increased after melatonin treatment. In general, the effects of age and melatonin treatment were similar in senescence-resistant mice (SAMR1) and SAMP8 cardiac and diaphragmatic mitochondria, suggesting that these mice strains display similar mitochondrial oxidative damage at the age of 10 months. The results also support the efficacy of long-term melatonin treatment in preventing the age-dependent mitochondrial oxidative stress.


1986 ◽  
Vol 20 (11) ◽  
pp. 1199-1199
Author(s):  
H Moeller ◽  
K Müller ◽  
B Goecke ◽  
A Attanasio ◽  
D Gupta

Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


2007 ◽  
Vol 177 (4S) ◽  
pp. 411-412
Author(s):  
Javier Miller ◽  
Angela Smith ◽  
Kris Gunn ◽  
Erik Kouba ◽  
Eric M. Wallen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document