cardiovascular rhythms
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 2)

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Paramita Pati ◽  
Dingguo Zhang ◽  
Jackson Colson ◽  
Shannon M Bailey ◽  
Karen L Gamble ◽  
...  

Irregular timing of food intake increases hypertension and cardiometabolic disease risk. A chronic high fat diet (HFD) also disrupts circadian rhythms. We hypothesized that active period time restricted feeding (TRF) during the last 2 weeks in mice on a chronic HFD will improve blood pressure rhythm, diurnal variation of circulating plasma factors, and vascular metabolism. Mice (male 8-week old, C57BL/6J) were fed a normal diet (ND; 10% fat) or HFD (45% fat) for 20 weeks ad libitum. For the final 2 weeks, half of the HFD mice were subjected to TRF. Mean arterial pressure (MAP), heart rate (HR), and locomotor activity were assessed by telemetry. TRF significantly increased the active-inactive period difference in MAP and HR in in mice fed a HFD (ΔMAP: ND: 16±0.7 mmHg, HFD: 15±0.8 mmHg, HFD+TRF: 18±0.9 mmHg, n=6-8, p=0.01; ΔHR: ND: 68±5.1 bpm, HFD: 69±6.5 bpm, HFD+TRF: 113±7.9 bpm, n=6-8, p<0.01). Diurnal changes in locomotor activity are not different between groups. At the end of the study, plasma was collected at 4 hour intervals over a 24 hour period (ZT0 at 7AM; ZT12 at 7PM). Circulating levels of liver-derived mediators β-hydroxybutyrate (βHB) and insulin-like growth factor-1 (IGF-1) showed significant differences due to diet but not TRF (βHB, ZT21: ND: 0.16±0.01 mM, HFD: 0.20±0.02 mM, HFD+TRF: 0.19±0.01 mM, n=5-6, p=0.02; IGF-1, ZT5: ND: 232±18 ng/mL, HFD: 292±34 ng/mL , HFD+TRF: 371±14 ng/mL, n=5-6, p<0.01). Plasma leptin was significantly higher in mice on HFD and reduced by TRF at ZT12 (ND: 5.3±1.3 ng/mL, HFD: 22.5±2.9 ng/mL, HFD+TRF: 10.3±3.5ng/mL, n=5-6, p<0.01) and ZT17 (ND: 6.7±1.1 ng/mL, HFD: 32.5±3.0 ng/mL, HFD+TRF: 25.0±1.3 ng/mL, n=5-6, p<0.01). Plasma adiponectin was unchanged between all groups. TRF in HFD mice increased NAD + , important for metabolism, in renal vessels at ZT17 (HFD: 0.10±0.02 pmol/μg; HFD+TRF: 0.19±0.03 pmol/μg; n=5, p=0.03). Aortic NAD + at ZT1 was not affected by TRF in HFD mice (HFD: 1.83±0.35 pmol/μg, HFD+TRF: 1.35±0.35 pmol/μg, n=4, p=0.37). Our results indicate that TRF in mice on HFD increases the active-inactive period difference in MAP and HR and alters plasma metabolites, suggesting the timing of food intake on a chronic HFD improves cardiovascular rhythms with increased renal vascular metabolism and reduced leptin levels.


2019 ◽  
pp. 1005-1019
Author(s):  
M.J. Mollakazemi ◽  
D. Biswal ◽  
S.C. Elayi ◽  
S. Thyagarajan ◽  
J. Evans ◽  
...  

A large number of studies document cardiorespiratory changes occurring while listening to music. Less is known, however, about the interaction between cardiorespiratory and cerebral electrical rhythms during listening to music and how cognition and acoustic structural aspects of songs influence that interaction. We focused on tempo as a structural feature of songs, since tempo is a major determinant of physiological responses to music, and on familiarity and randomization of phase of local spectra of known and unknown songs for cognition. Our results indicated an overall increase in the degree of synchronization among cardiorespiratory variables (Heart rate (RR), systolic and diastolic blood pressure (SBP, DBP), respiration) and between cardiorespiratory and cerebral (EEG) oscillations during all songs. We also observed a marked decrease in respiratory frequency bandwidth and increase in respiratory rate while listening to songs, and slow song produced the most periodic breathing. Compared with slow tempo, during fast song, DBP and cerebral oscillations became less synchronized with high frequency components of RR suggesting that the processes causing the previously known reduction in vagal activity with increase in tempo also may have caused the decrease in these synchronizations. Cognition of songs affected the SBP coherencies the most. DBP was synchronized with respiration more than all other measured variables in response to auditory stimuli. Results indicate an overall increase in the degree of synchronization among a variety of cerebral electrical and autonomically driven cardiovascular rhythms. It is possible that this significant increase in synchronizations underlies the widely reported pleasurable and palliative effects of listening to music.


2019 ◽  
Vol 115 (11) ◽  
pp. 1576-1595 ◽  
Author(s):  
Oliver Monfredi ◽  
Edward G Lakatta

Abstract Biological rhythms exist in organisms at all levels of complexity, in most organs and at myriad time scales. Our own biological rhythms are driven by energy emitted by the sun, interacting via our retinas with brain stem centres, which then send out complex messages designed to synchronize the behaviour of peripheral non-light sensing organs, to ensure optimal physiological responsiveness and performance of the organism based on the time of day. Peripheral organs themselves have autonomous rhythmic behaviours that can act independently from central nervous system control but is entrainable. Dysregulation of biological rhythms either through environment or disease has far-reaching consequences on health that we are only now beginning to appreciate. In this review, we focus on cardiovascular rhythms in health, with ageing and under disease conditions.


2019 ◽  
Vol 316 (1) ◽  
pp. R50-R58 ◽  
Author(s):  
Lauren G. Douma ◽  
Kristen Solocinski ◽  
Meaghan R. Holzworth ◽  
G. Ryan Crislip ◽  
Sarah H. Masten ◽  
...  

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


2017 ◽  
Vol 38 (5) ◽  
pp. 819-832 ◽  
Author(s):  
Dorota Wejer ◽  
Beata Graff ◽  
Danuta Makowiec ◽  
Szymon Budrejko ◽  
Zbigniew R Struzik

2016 ◽  
Vol 33 (9) ◽  
pp. 1148-1160 ◽  
Author(s):  
Michal Zeman ◽  
Lubos Molcan ◽  
Iveta Herichova ◽  
Monika Okuliarova

2015 ◽  
Vol 9 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Denis G. Gubin ◽  
Gennady D. Gubin ◽  
Ludmila I. Gapon ◽  
Dietmar Weinert

2014 ◽  
pp. 83-93 ◽  
Author(s):  
Raffaello Furlan ◽  
Nicola Montano ◽  
Alberto Porta

Sign in / Sign up

Export Citation Format

Share Document