scholarly journals Computer Aided Formulation and Characterization of Propranolol Hcl Buccal Tablet Using Polymeric Blend

2017 ◽  
Vol 8 (1) ◽  
pp. 1-13
Author(s):  
Sana Hanif ◽  
Nadeem Irfan ◽  
Zeeshan Danish ◽  
Nisaar Hussain ◽  
Muhammad Ali ◽  
...  

The current study was aimed to formulate a continuous release mucoadhesive buccal tablet containing propranolol HCl. The type and quantities of polymers as well as method of compression were set in a preliminary study (F1-F13). Direct compression method was employed in the main study (F14-F24) using Carbopol® 934P (CP), ethylcellulose (EC), sodium alginate (SA), hydroxypropyl methylcellulose (HPMC k4M) and carboxymethylcellulose (CMC) as mucoadhesive polymers and were tested for physicochemical tests i.e. swellability, surface pH, mucoadhesive time, mucoadhesive strength, in vitro release etc. Results obtained from the study were optimized using NeuralPower® 3.1, an artificial intelligence approach. Against the desirability of physico-chemical parameters, the software optimized the ingredients as HPMC (150mg), CMC (25mg), CP (20mg) and EC (20mg). Outcome revealed that HPMC primarily contributed to the physicochemical properties of mucoadhesive formulation. To compare prediction, optimized ingredients were formulated (F25) and tested. The swellability index of confirmation formulation (F25) was 102% at 6 h. As predicted, similar release pattern was of F25 was obtained as 26% (0.5h), 34% (1h), 40% (2h), 45% (3h), 50% (4h), 62% (5h), 76% (6h), 85% (7h) and 97% (8h) respectively. For release kinetics, DD solver® suggested the release of the drug to be non-Fickian.

2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (01) ◽  
pp. 37-43
Author(s):  
Ashwin A. Patil ◽  
Ketan B. Patil ◽  
Laxmikant R. Zawar

Present work focused on thiolation for enhancing the mucoadhesive potential of Gum kondagogu (GK). Thiolation of GK was done by esterification process with 80 % thioglycolic acid in presence of 7N HCl. Thiolated Gum kondagogu (ThioGK) was determined to possess 1.59 ±0.04 mmol of thiol groups/g of the polymer by Ellman’s method. ThioGK was characterized by FTIR, NMR, DSC, XRD, and FE-SEM. The tablets were prepared by direct compression using 75 mg of ThioGK and GK. Tablets containing ThioGK (F1) and GK (F2) were subjected to evaluation of weight variation, hardness and friability and show enhanced disintegration time, swelling behavior, drug release and mucoadhesion. In vitro drug release of batch F1 exhibits complete release of drug in 24 hr with zero order release kinetics. Comparative mucoadhesive strength was studied using chicken ileum by texture analyzer and revealed higher mucoadhesion of tablet containing ThioGK. From the above study, ThioGK was suitability exploited as mucoadhesive sustained release matrix tablet.


2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


Author(s):  
AKPABIO E. I. ◽  
EFFIONG D. E. ◽  
UWAH T. O. ◽  
SUNDAY N. I.

Objective: This study was undertaken to formulate a floating drug delivery system of theophylline hydrochloride using different concentrations of a chosen polymer and then investigate how polymer concentration affects buoyancy and drug release properties of the tablets. Methods: Hydroxypropyl methylcellulose (HPMC) at different concentration levels of 15% (F1), 20% (F2) and 30% (F3) was used to form the three formulation batches of floating tablets. Wet granulation method was used for the granule preparation while Sodium bicarbonate and citric acid were used as the gas generating agent. The physical properties of the granules and the floating tablets were evaluated. Also determined were the physicomechanical properties, buoyancy and swelling characteristics of the tablets. The in vitro drug release study was carried out according to the USP I (basket method) for 8h in 900 ml 0.1N HCl at 50 rpm. Samples withdrawn at the regular predetermined time were analyzed spectrophotometrically at a wavelength of 271 nm and data obtained statistically analyzed by one-way analysis of variance (ANOVA). The differences between means were considered significant at P<0.05. Results: The result showed that polymer (HPMC) concentration significantly (p>0.05) increased swelling index and improved floating lag time, it had no significant effect on the total floating time. Percentage drug release at the end of 8 h was 100%, 98.2% and 96.13% for formulation F1, F2 and F3, respectively. All three formulations followed the Higuchi drug release kinetics model and the mechanism of drug release was the non Fickian diffusion with exponents of 0.46, 0.51 and 0.56 for the respective batch. Conclusion: Batch F3 gave a better-controlled drug release and floating properties in comparison to batch F1 and F2 thus Polymer concentration influenced the onset of floating and controlled the release of Theophylline.


Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


Author(s):  
Srinivasa Rao Baratam ◽  
Vijayaratna J

Objective: The aim of the study was to develop a floating drug delivery system of levofloxacin (LVF) hemihydrate for sustained drug delivery to improve the extended retention in the stomach, oral bioavailability, and local site-specific action in the stomach. Methods: Preparation of LVF tablets using melt granulation method using hydroxypropyl methylcellulose (HPMC) K4M with sodium bicarbonate as gas generating agent. From LFTA1 to LFTA5, formulations were developed and evaluated for floating properties for swelling characteristics and in vitro drug release studies. In vitro dissolution was carried out using USP II paddle method using 0.1N HCI pH buffer at 50 rpm and samples were measured at 294 nm using ultraviolet-visible spectroscopy. Results: Obtained Fourier-transform infrared charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. In vitro drug release was performed and drug release kinetics were evaluated using the linear regression method and were found to be followed the zero-order release by diffusion controlled release. Optimized formula was found to be LFTA4 with 20% of a polymer with 99.03% of drug release with 12 h of floating time and 32 s floating lag time. Conclusion: Matrix tablets (LFTA4) formulated employing 20% HPMC K4M are best suited to be used for gastroretentive dosage form of LVF.


Sign in / Sign up

Export Citation Format

Share Document