Investigation of Substitution Reactions Between Zinc(II) Complexes with Different Geometries and N-bonding Nucleophiles

2021 ◽  
Vol 01 ◽  
Author(s):  
Tanja Soldatović ◽  
Enisa Selimović

Aims: Investigation of interactions between zinc(II) complexes with different geometrical structures and relevant nitrogen donor nucleophiles at physiological pH. Background: The lack of clear distinction between the therapeutic and toxic doses of platinum drugs is a major challenge for the design of novel non-platinum DNA and protein targeting metal-based anticancer agents. The non-platinum antitumor complexes could be alternatives to platinum-based drugs due to their better characteristics and different mechanism of action. Objective This study could provide more information for the design of future zinc-based anticancer drugs, as well as providing a better understanding of the mechanism of interactions between Zn(II) complexes and nitrogen-donor nucleophiles (important from a medical point of view) and clarifies the changes in geometrical structures of zinc(II) that are referred to structure-reactivity correlation Methods Mole-ratio method and UV-Vis spectroscopic kinetic method were applied in this study. Objective : This study could provide more information for the design of future zinc-based anticancer drugs, as well as providing a better understanding of the mechanism of interactions between Zn(II) complexes and nitrogen-donor nucleophiles (important from a medical point of view) and clarifies the changes in geometrical structures of zinc(II) that are referred to structure-reactivity correlation Methods Mole-ratio method and UV-Vis spectroscopic kinetic method were applied in this study. Result: The results indicated additional coordination of chlorides in the first coordination sphere with changes in coordination geometry and formation of the octahedral complex anion [ZnCl4(en)]2- while an excess of chloride didn’t affect the square-pyramidal structure of [ZnCl2(terpy)]. The substitutions of studied complexes and relevant nucleophiles proceed in two consecutive reaction steps that depend on the nucleophile concentration. Octahedral complex anion [ZnCl4(en)]2- forms rapidly, and all substitution processes of this complex species should be considered. We assume that the first reaction step is accompanied by the dissociation of chloride ligands. Nucleophile 1,2,4-triazole have shown the highest affinity toward [ZnCl2(en)], and rates of both steps are almost the same value, which indicates parallel reactions. Conclusion: The different order of reactivity of relevant N-donor ligands toward [ZnCl2(en)] and [ZnCl2(terpy)] complexes for the first reaction step occurred due to the influence of different geometrical structures of complexes. In contrast, low reaction rates for the second reactions of [ZnCl2(en)] complex with imidazole and pyrazine were a consequence of interconversion between octahedral and tetrahedral structure during substitution processes.

2018 ◽  
Vol 43 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Tanja Soldatović ◽  
Enisa Selimović

The mole-ratio method was used for determining metal–ligand stoichiometry for the reaction between [ZnCl2(en)] (where en = 1,2-diaminoethane or ethylenediamine) and chloride ion at pH 7.2. The results have shown step-wise formation of 1:1 and 1:2 complexes and indicate additional coordination of chloride ions in the first coordination sphere. The kinetics of ligand substitution reactions of the zinc(II) complex and biologically relevant nucleophiles such as inosine-5′-monophosphate (5′-IMP), guanosine-5′-monophosphate (5′-GMP), L-methionine (L-Met), glutathione (GSH) and DL-aspartic acid (DL-Asp) were investigated at pH 7.2 as a function of nucleophile concentration in the presence of 0.010 M NaCl. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions include two steps of consecutive displacement of chlorido ligands and changes in coordination geometry. In the presence of an excess of chloride, the octahedral complex anion [ZnCl4(en)]2- formed. The first step of the substitution reactions could be interpreted as substitution of the axial chlorido ligands in the cis position to bidentate ethylenediamine by the biologically relevant nucleophiles, while the second step could be interpreted as substitution of the equatorial chlorido ligand. The order of reactivity of the investigated nucleophiles for the first reaction step is 5′-IMP > GSH > L-Met > DL-Asp > 5′-GMP, while for the second reaction step the order of reactivity is GSH > L-Met > 5′-IMP > DL-Asp > 5′-GMP.


2013 ◽  
Vol 10 (2) ◽  
pp. 420-431
Author(s):  
Baghdad Science Journal

A new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination between the metal ions and our ligand takes place.The conductivity measurements , elemental analysis ,the percentage of some metal ions and the measurements of magnetic susceptibility of the complexes were determined ,Depending on these results , in addition to, We may conclude that the ligand was bidentate Also the proposed geometrical structures of the complexes of Co(II), Ni(II), Zn(II) and Cd (II) ions are octahedral


2020 ◽  
Vol 1111 ◽  
pp. 60-66
Author(s):  
Hitoshi Watarai ◽  
Mariko Kurahashi

2011 ◽  
Vol 83 (9) ◽  
pp. 1709-1719 ◽  
Author(s):  
Jan Reedijk

The development of a few worldwide routinely used Pt(II) coordination compounds is described from a mechanistic point of view and related to the molecular aspects of Pt-DNA binding. Mechanistic knowledge developed from these studies is applied nowadays for the design and synthesis of new bifunctional and trifunctional compounds, aimed for use as improved anticancer drugs.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
O. V. Ikpeazu ◽  
I. E. Otuokere ◽  
K. K. Igwe

Cefotaxime, a β-lactam antibiotic, has a structure which enables it to act as a chelating agent. The formation of Fe(III) complex with cefotaxime has been studied colorimetrically at an absorption maximum of 480 nm at different temperatures. The data showed that Fe(III) and cefotaxime combine in the molar ratio of 1:1  at pH 7.4 with ionic strength maintained using 0.1M KNO3. The stability constants of the complex were calculated to be 1.56 - 1.90 x 104 by continuous variation method and 1.34 - 1.71 x 104 by mole ratio method at 25 and 40 oC respectively. ∆HƟ values for the complex were calculated to be -1.02 x 104 and -1.05 x 104 J by continuous variation method and mole ratio method respectively. ∆GƟ of the complex were calculated to be -2.44 – (-2.51) x 104 J by continuous variation method and -2.41- (- 2.48)  x 104 J by mole ratio method at 25 and 40 oC.  ∆SƟ of the complex were calculated to be 2.44 - 2.51 x 104 J/K by continuous variation method and -2.41 -2.48) x 104 J/K by mole ratio method at 25 and 40 oC respectively. Cefotaxime is a good chelating agent and can be an efficient antidote in the therapy of copper overload or poisoning.  


1980 ◽  
Vol 35 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Karl-Heinz Tytko ◽  
Georgios Petridis ◽  
Bernd Schönfeld

The system H+/MoO42- was investigated by Raman spectroscopy in the range Z = 0 to 1.14 at initial concentrations CMoO₄ 2- = 0.02 to 2M and concentrations of the ionic medium CMe+ = 2CMoO₄ 2- to 3M Me(Cl,NO3) (Me=Li, Na, K,NH4 , Mg/2). The mole-ratio method and intensity difference diagrams do not indicate any species between MoO42- and Mo7O246- contrary to propositions in recent papers. A detailed evaluation of the extensive data shows the possible portion of such species to be < 3 % , this value having a statistical certainty of 95%. Comparing the solutions having Z = 1.1 by fingerprint procedures, in all cases Mo7O246- is the first main product (detectable by static methods) irrespective of the nature and concentration of the ionic medium. Thus, Mg2+ ions do not influence the course of aggregation of molybdate ions as has been proposed in the literature. This is in accordance with theoretical investigations since the Mo7O246- ion has the distinction of a number of favourable structural parameters in the system that become operative in case of scarcity of H+ ions.


1970 ◽  
Vol 48 (9) ◽  
pp. 1414-1419 ◽  
Author(s):  
Byron Kratochvil ◽  
Robert Long

In acetonitrile, iron(II) forms stable 1:1 complexes with chloride, bromide, and iodide and both 1:1 and 1:2 complexes with thiocyanate. Stepwise formation constants for the complexes were determined spectrophotometrically by a mole-ratio method. The log K values are: FeCl+, 5.8; FeBr+, 5.5; FeI+,4.3; Fe(SCN)+, 5.5; and Fe(SCN)2, 3.7.


Author(s):  
Datta B. Mandhare ◽  
Vasant D. Barhate

Objective: A simple spectrophotometric method has been developed for the determination of Iron (III) by using Schiff base 2-[(2-hydroxyphenylimino) methyl]-4-nitrophenol [HPIMNP].Methods: HPIMNP extracts Fe (III) quantitatively (99.95%) into chloroform from an aqueous solution of pH range 4.0-6.0.Results: The chloroform extracts show maximum absorption at 510 nm (λ max). Beer’s Law is obeyed over the Fe (III) concentration range of 0.5 to 20.0 µg/ml. The Molar absorptivity and Sandell’s sensitivity for Fe–HPIMNP system is 5000 L mol ˉ1 cmˉ1 and 0.011 µg cmˉ2respectively. The composition of extracted species is found to be 1: 3 [Fe-HPIMNP] by Job’s continuous variation and Mole-ratio method. Interference by various ions has been studied.Conclusion: The proposed method is rapid, sensitive, reproducible and accurate and it has been satisfactory applied for the determination of Iron in Pharmaceutical Samples.


2017 ◽  
Vol 89 (19) ◽  
pp. 10141-10146 ◽  
Author(s):  
Hitoshi Watarai ◽  
Jiayue Chen

2015 ◽  
Vol 12 (06) ◽  
pp. 1561007 ◽  
Author(s):  
M. Asorey ◽  
A. Ibort ◽  
G. Marmo

The theory of self-adjoint extensions of first- and second-order elliptic differential operators on manifolds with boundary is studied via its most representative instances: Dirac and Laplace operators. The theory is developed by exploiting the geometrical structures attached to them and, by using an adapted Cayley transform on each case, the space [Formula: see text] of such extensions is shown to have a canonical group composition law structure. The obtained results are compared with von Neumann's theorem characterizing the self-adjoint extensions of densely defined symmetric operators on Hilbert spaces. The 1D case is thoroughly investigated. The geometry of the submanifold of elliptic self-adjoint extensions [Formula: see text] is studied and it is shown that it is a Lagrangian submanifold of the universal Grassmannian Gr. The topology of [Formula: see text] is also explored and it is shown that there is a canonical cycle whose dual is the Maslov class of the manifold. Such cycle, called the Cayley surface, plays a relevant role in the study of the phenomena of topology change. Self-adjoint extensions of Laplace operators are discussed in the path integral formalism, identifying a class of them for which both treatments leads to the same results. A theory of dissipative quantum systems is proposed based on this theory and a unitarization theorem for such class of dissipative systems is proved. The theory of self-adjoint extensions with symmetry of Dirac operators is also discussed and a reduction theorem for the self-adjoint elliptic Grassmannian is obtained. Finally, an interpretation of spontaneous symmetry breaking is offered from the point of view of the theory of self-adjoint extensions.


Sign in / Sign up

Export Citation Format

Share Document