Region Secure and Pattern Based Alternate 2B-3C Steganography Approach for Data Security in Color Images

Author(s):  
Kapil Juneja

Background and Objective: The public and group communication carried out in the social, cloud, and mobile networks suffer from unauthorized users. The data security is required for secure authentication, monetary transactions and other sensitive information. The steganography methods empower the user with invulnerable communication in public domain. In this paper, a region secure and pattern based alternate 2B-3C (2Bit-3Channel) Steganography method is proposed to improve the content reliability and data security. Methods: In this method, the cover pixels are retrieved by applying the spiral rectangular pattern over the cover image. This spiral pattern also secures the core content region and the pixels from the core ROI (Region of Interest) is used as a cover only for larger size secret information. In this proposed steganography method, two channels are considered alternatively based on the defined rules. The LSB (Least Significant Bit) of both channels is XOR with input data bits and key to perform data hiding. The method is applied on real time color images taken from COREL and USC-SIPI-ID. The evaluation of proposed steganography approach is done using MSE (Mean Square Error), PSNR (Peak Signal-to-Noise Ratio), BER (Bit Error Rate), NCC (Normalized Cross Correlation) and SSIM (Structural Similarity Index Matrix). Result: The comparative results are generated for 50 real time images against the existing LSB (Least Significant Bit), LSBM (Least Significant Bit Modulation), LSBMR (Least Significant bit Matched Revisited), SCC (Stego Color Cycle), SHSI (Simple Hue-Saturation-Intensity), HIS-MLSB(Simple Hue-Saturation-Intensity-Modified LSB) and IMMEA(Iterative Magic Matrix Encryption Algorithm) methods. Conclusion: The experimentation results verified that the proposed 2B-3C approach improved the data hiding in qualitative and quantitative aspects.

Magnetic resonance image noise reduction is important to process further and visual analysis. Bilateral filter is denoises image and also preserves edge. It proposes Iterative bilateral filter which reduces Rician noise in the magnitude magnetic resonance images and retains the fine structures, edges and it also reduces the bias caused by Rician noise. The visual and diagnostic quality of the image is retained. The quantitative analysis is based on analysis of standard quality metrics parameters like peak signal-to-noise ratio and mean structural similarity index matrix reveals that these methods yields better results than the other proposed denoising methods for MRI. Problem associated with the method is that it is computationally complex hence time consuming. It is not recommended for real time applications. To use in real time application a parallel implantation of the same using FPGA is proposed.


Author(s):  
Manju Rahi ◽  
Payal Das ◽  
Amit Sharma

Abstract Malaria surveillance is weak in high malaria burden countries. Surveillance is considered as one of the core interventions for malaria elimination. Impressive reductions in malaria-associated morbidity and mortality have been achieved across the globe, but sustained efforts need to be bolstered up to achieve malaria elimination in endemic countries like India. Poor surveillance data become a hindrance in assessing the progress achieved towards malaria elimination and in channelizing focused interventions to the hotspots. A major obstacle in strengthening India’s reporting systems is that the surveillance data are captured in a fragmented manner by multiple players, in silos, and is distributed across geographic regions. In addition, the data are not reported in near real-time. Furthermore, multiplicity of malaria data resources limits interoperability between them. Here, we deliberate on the acute need of updating India’s surveillance systems from the use of aggregated data to near real-time case-based surveillance. This will help in identifying the drivers of malaria transmission in any locale and therefore will facilitate formulation of appropriate interventional responses rapidly.


2012 ◽  
Vol 214 ◽  
pp. 579-583
Author(s):  
Jiang Ma ◽  
Yu Qiao Wen ◽  
Ling Yan Du ◽  
Xiao Xiao Liang ◽  
Chong Gang Wei

Transfusion monitoring and controlling system of wireless communication is designed for avoidance of medical accident due to inconsiderate care. This system is based on RS-485 bus protocol to build the communication network, consisting of master computer and slave computer. STM32F103R8T6 MCU is the core of the master computer, and MSP430F2132 MCU for slave computer. The wireless transmission of data between master computer and slave computer can be done by nRF905 wireless transceiver module. One new calculation of drop speed is used for better real-time displaying thereof. Provided that abnormal occurrence is during the transfusion, the transfusion tube will be closed by controlling order from system, in order to protect the patient.


2012 ◽  
Vol 241-244 ◽  
pp. 2504-2509
Author(s):  
Yan Li ◽  
Qiao Xiang Gu

The equipment, called detection platform of the cylinders, is used for detecting cylinders so that cylinders can be at ease use. In order to transmit the real-time detection data to PC for further processing, the platform should be connected with PC. Cable connection, in some production and environmental conditions, is limited. Under the circumstance, building wireless network is the better choice. Through comparative studying, ZigBee is chosen to be the technology for building wireless network. ZigBee chip and ZigBee2006 protocol stack are the core components in the ZigBee nodes.


2014 ◽  
Vol 556-562 ◽  
pp. 2208-2211
Author(s):  
Xue Feng Yang

According to the need of the real-time monitoring and displaying of the environment in many areas,to put forward a method of temperature monitoring and displaying, using STC11F32XE microcontroller as the core controller, DS18B20 as temperature acquisition chip, 32X64LED dot matrix screen as a display screen,using the mothod of multi point detection method,real-time monitoring of swimming pool water temperature and room temperature, real-time displaying of Multipoint collecting information, Real time processing the detected temperature, the page display to multipoint temperature display through the wireless remote control module,the system will alarm When the water temperature is too high or too low, to remind managers of real-time processing.To design a clear temperature display for the swimming pool,real time monitoring and controlling is very convenient,after the experimental verification, the system reaches the anticipative goal,the system is an ideal and effective.


2021 ◽  
Vol 12 (1) ◽  
pp. 53-72
Author(s):  
Mohsin Khan ◽  
Bhavna Arora

Connected automated vehicle (CAV) technology is the core for the new age vehicles in research phase to communicate with one another and assimilation of vehicular ad-hoc network (VANET) for the transference of data between vehicles at a quantified place and time. This manuscript is an enactment of the algorithms associated to the maintenance of secure distance amongst vehicles, lane shifting, and overtaking, which will diminish the occurrence of collisions and congestions especially phantom jams. Those implementations are centered over CAV and VANET technology for the interconnection of the vehicles and the data transmission. The data is associated to the aspects of a vehicle such as speed, position, acceleration, and acknowledgements, which acts as the fundamentals for the computation of variables. In accordance with the environment of a particular vehicle (i.e., its surrounding vehicles), real-time decisions are taken based on the real-time computation of the variables in a discrete system.


Sign in / Sign up

Export Citation Format

Share Document