Current Research and Patents of Plant Fiber Composites

2019 ◽  
Vol 12 (1) ◽  
pp. 37-44
Author(s):  
Jiankang Wang ◽  
Zhijian Li ◽  
Hongwei Lu

Background: With the improvement of environment protection awareness, human beings have gradually become aware of that the plastic products, waste are harmful to the human living environment. Therefore, research and application of biodegradable materials that do not rely on petroleum resources have become hot topics. Researchers have accelerated the development and promotion of plant fiber because they are good flexibility, relatively rough surface and biodegradable. Objective: The development of plant fiber composites is reviewed, including composition ratio, interfacial modification, processing technology, and the effects of these technologies on the properties of plant fiber composites. Methods: The paper reviews various patents and research developments about plant fiber composite materials. It also analyzes the advantages and disadvantages of various patents and technologies from the aspects of biodegradable ability, mechanical properties, dispersing performance, processing properties, cost, and so on. Results: The component proportion, interface modification, and processing technology of plant fiber composite materials are prospected to improve the quality and application of the plant fiber composite materials in the future development. Conclusion: The considerable attention has been paid on the technology of biodegradable plant fiber composite. The recent patents and technologies have shown us a wider application in biodegradable plant fiber composite. The problems how to improve the mechanical properties of plant fibers, the dispersion properties of plant fibers and resins, and the processing properties of composite materials, will need more and more methods and equipment to solve or simplify.

2021 ◽  
Vol 888 ◽  
pp. 15-21
Author(s):  
Ivelina Ivanova ◽  
Jules Assih ◽  
Dimitar Dontchev

This research aims at studying the mechanical properties of industrial hemp fibers and promoting their use as a reinforcing composite material for strengthening of civil engineering structures. Natural hemp fibers are of great interest due to the following advantages they have: low cost, high strength-to-weight ratio, low density and non-corrosive properties. The use of plant fiber composite materials has increased significantly in recent years because of the negative reduction impact on the environment. For example, the tendency to use renewable resources and their possibility for recycling. They cause fewer health and environmental problems than synthetic fibers. Natural fibers, in addition to environmental aspects, have advantages such as low densities, i.e. have low weight, interesting mechanical properties comparable to those of synthetic fiber materials, and last but not least, low cost. Composites based on natural plant fibers can be used to reinforce or repair reinforced concrete structures, as shown by research on flax fiber composites. These concretes specimens strengthened with biocomposite materials have very good resistance to bending and significantly increase the rigidity of the structure. The results show that the hemp fiber reinforcement has significant effects on the strengthening and increase in flexural strength from 8% to 35 %.


1995 ◽  
Vol 117 (4) ◽  
pp. 501-507 ◽  
Author(s):  
K. Ramani ◽  
A. K. Miller ◽  
M. R. Cutkosky

Conventionally, large components made of thermoplastic matrices and continuous fibers are manufactured in autoclaves using dies. As the applications of composite materials increase, there is a need to reduce costs and increase manufacturing flexibility. This need has led to the development of a new concept called “die-less forming”. The concept of “kinematically admissible bending” is central to the concept of die-less forming. The concepts behind die-less forming have been tested in preliminary experiments on a two-roller demonstration machine. Induction heating was used to locally heat the composite as it moved into the forming zone, where it was bent using a specially designed cluster roller. Induction heating combined with a variable velocity profile was successful in establishing a uniform heating profile. Experiments were conducted for multidirectional APC-2 carbon/PEEK fiber composites and the composite bending behavior was explained using energy methods.


2021 ◽  
Vol 2 (01) ◽  
pp. 13-23
Author(s):  
Md. Maruf Billah ◽  
Md. Sanaul Rabbi ◽  
Afnan Hasan

From the last few decades, the study of natural fiber composite materials has been gaining strong attention among researchers, scientists, and engineers. Natural fiber composite materials are becoming good alternatives to conventional materials because of their lightweight, high specific strength, low thermal expansion, eco-friendly, low manufacturing cost, nonabrasive and bio-degradable characteristics. It is proven that natural fiber is a great alternative to synthetic fiber in the sector of automobiles, railway, and aerospace. Researchers are developing various types of natural fiber-reinforced composites by combining different types of natural fiber such as jute, sisal, coir, hemp, abaca, bamboo, sugar can, kenaf, banana, etc. with various polymers such as polypropylene, epoxy resin, etc. as matrix material. Based on the application and required mechanical and thermal properties, numerous natural fiber-based composite manufacturing processes are available such as injection molding, compression molding, resin transfer molding, hand lay-up, filament welding, pultrusion, autoclave molding, additive manufacturing, etc. The aim of the paper is to present the developments of various manufacturing processes of natural fiber-based composites and obtained mechanical properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yujiao Zhang ◽  
Cheng Yan ◽  
Xiongfeng Huang ◽  
Yanran Chen

The closed clamp is a standard tool for the insulator replacement in ultrahigh voltage (UHV) transmission lines, which is mainly made of titanium alloy material and weighs more than 27 kg that greatly reduces the working efficiency for operators. Due to the lightweight demand, carbon fiber composite materials are applied to design a new type of clamp, in which mechanical properties of new fixtures need to be fulfilled while considering poor impact resistance and low interlaminar shear strength of carbon fiber composite materials. To excavate a high-strength ply structure, finite element progressive damage strength analysis is employed to evaluate the mechanical properties of three different ply angles of the carbon fiber closed fixture, in which Tsai–Wu strength theory is thought as the strength judgment basis for carbon fiber composite materials. After comparison with the displacement-load curves, the three different ply angles fail to meet the strength requirements. So, a carbon fiber laminate structure with an outer cladding for carbon fiber closed fixtures is raised and verified. The analysis results show that the laminate structure meets the strength requirements. Destructive test of the new closed clamp is conducted to verify the correctness of the proposed method, and the weight is reduced by 36.46%.


2016 ◽  
Vol 72 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Lihua LV ◽  
Xuefei ZHANG ◽  
Guibin LIU ◽  
Yongfang QIAN ◽  
Fang YE ◽  
...  

2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Richard M. Christensen

Building upon previous work, the failure criterion for unidirectional fiber composite materials is examined using a sensitivity analysis as applied to its transverse, matrix controlled failure properties. A new and general relationship is found between these three properties thereby reducing the total number of independent properties needed to calibrate the theory to five. This completes and closes the development of failure criteria for unidirectional fiber composites by the polynomial invariants method. A broad but detailed evaluation of the resulting failure criteria is given. Future applications for these new failure criteria are discussed.


Sign in / Sign up

Export Citation Format

Share Document