Overview of Nanocellulose in Food Packaging

2020 ◽  
Vol 11 (2) ◽  
pp. 154-167 ◽  
Author(s):  
Erika Souza ◽  
Leda Gottschalk ◽  
Otniel Freitas-Silva

Background: The rising concern with environmental preservation has led to increasing interest in biodegradable polymer composites from renewable sources, such as cellulose and its derivatives. The use of nanocellulose is an innovative food packaging trend. Discussion: This paper presents an overview and discusses the state of the art of different nanocellulose materials used in food and food packaging, and identifies important patents related to them. It is important to consider that before marketing, new products must be proven safe for consumers and the environment. Conclusion: Several packaging materials using nanocellulose have been developed and shown to be promising for use as active and intelligent materials for food packaging. Other nanocellulose products are under investigation for packaging and may enter the market in the near future. Many countries have been adjusting their regulatory frameworks to deal with nanotechnologies, including nanocellulose packaging.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2039 ◽  
Author(s):  
Hongbo Chen ◽  
Jingjing Wang ◽  
Yaohua Cheng ◽  
Chuansheng Wang ◽  
Haichao Liu ◽  
...  

As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
S. Om Prakash ◽  
Parul Sahu ◽  
Mohankumar Madhan ◽  
A. Johnson Santhosh

In ongoing decades, material researchers and scientists are giving more consideration towards the improvement of biobased polymer composites as various employments of items arranged by natural fibres and petrochemical polymers prompt natural awkwardness. The goal of this review paper is to provide an intensive review and applications of the foremost appropriate commonly used biodegradable polymer composites. It is imperative to build up the completely/incompletely biodegradable polymer composites without bargaining the mechanical, physical, and thermal properties which are required for the end-use applications. This reality roused to create biocomposite with better execution alongside the least natural effect. The utilization of natural fibre-reinforced polymer composites is concerned with the mechanical properties that are highly dependent on the morphology, hydrophilic tendency, aspect ratio, and dimensional stability of the natural fibre. With this in-depth consideration of eco-friendly biocomposites, structural application materials in the infrastructure, automotive industry, and consumer applications of the following decade are attainable within the near future.


Sign in / Sign up

Export Citation Format

Share Document