Direct Synthesis of Formic acid from Carbon Dioxide by Hydrogenation over Ruthenium Metal Doped Titanium Dioxide Nanoparticles in Functionalized Ionic Liquid

2021 ◽  
Vol 08 ◽  
Author(s):  
Vivek Srivastava

Background: Presently worldwide manufacturing of formic acid follows the permutation of methanol and carbon monoxide in the presence of a strong base. But due to the use of toxic CO molecules and easy availability of CO2 molecules in the atmosphere, most of the research has been shifted from the conventional method of formic acid synthesis to direct hydrogenation of CO2 gas using different homogenous and heterogeneous catalysts. Objective: The study aims to develop a reaction protocol to achieve easy CO2 hydrogenation to formic acid using an Ionic liquid reaction medium. Methods: We used the sol-gel method followed by calcination (over 250oC for 5 hours) to synthesize two types of ruthenium metal-doped TiO2 nanoparticles (with and without ionic liquids) Ru@TiO2@IL and Ru@TiO2. We report the application NR2 (R= CH3) containing imidazolium-based ionic liquids to achieve a good reaction rate and get agglomeration free ruthenium metal-doped TiO2 nanoparticles along with easy product isolation due to the presence of NR2 (R= CH3) functionality in ionic liquid structure. We synthesized various NR2 (R= CH3) functionalized ionic liquids such as 1-Butyl-3-methylimidazolium Chloride, 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium trifluoromethane sulfonate ([DAMI][TfO]), 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium bis (trifluoromethylsulfonyl) imide ([DAMI][NTf2]) and 1-butyl-3-methylimidazolium chloride ionic liquids were synthesized as per the reported procedure. Results: We quickly developed two typed of Ru metal-doped TiO2 nanoparticles using the sol-gel method. After calcination, both Ru@TiO2@IL (3.2 wt% Ru), and Ru@TiO2 (1.7 wt% Ru) materials were characterized by XRD, FTIR, TEM, ICP-AES, EDS, and XANES analysis. After understanding the correct structural arrangement of Ru metal over TiO2 support, we utilized both Ru@TiO2@IL (3.2 wt% Ru) and Ru@TiO2 (1.7 wt% Ru) the materials as a catalyst for direct hydrogenation of CO2 in the presence of water. We functionalized [DAMI] [TfO] ionic liquid. Conclusion: After understanding the correct morphology and physiochemical analysis of Ru@TiO2@IL (3.2 wt% Ru), and Ru@TiO2 (1.7 wt% Ru) catalysts, we examined their application in CO2 reduction and formic acid synthesis. Here we demonstrated the preparation and characterization of TiO2 supported Ru nanoparticles with and without ionic liquid. We also noticed the significant effect of functionalized [DAMI] [TfO] ionic liquid and water to improve the formic acid yield during the optimization. Last, we also checked the stability of the catalyst by recycling the same till the 7th run.

2018 ◽  
Vol 8 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Manzoor ◽  
A. Rafiq ◽  
M. Ikram ◽  
M. Nafees ◽  
S. Ali

2012 ◽  
Vol 12 (2) ◽  
pp. 950-954 ◽  
Author(s):  
Masoud Karimipour ◽  
J. Magnus Wikberg ◽  
Nasser Shahtahmasebi ◽  
Mahmood Rezaee Rokn Abad ◽  
M. M. Bagheri-Mohagheghi ◽  
...  

Author(s):  
Chelaramani K. ◽  
Varshney R. ◽  
Bhardwaj A.

The TiO2 and Ag and Zn doped TiO2 nanoparticles were synthesized by sol-gel method.The sol-gel method is one of the versatile method to prepare doped and co-doped nanoparticles. sol gel method has emerged as simpler and better option than physical and chemical procedures as it is fast, clean and eco-friendly alternative that does not involve any costly instruments .Synthesis of doped and co-doped nanoparticles having good photocatalytic activity have great potential for the degradation of dye. We have tried to develop new effective antimicrobial reagents with good photocatalytic activities which are not resistant to disease causing microbes.


2020 ◽  
Vol 6 (3) ◽  
pp. 915-917
Author(s):  
Rajani Altaf ◽  
Sharma Jyoti ◽  
Dave Pranav

Metal oxide nano-composites plays a very important role in many areas of chemistry, physics and material science. This paper explains the synthesis and comparison of zinc and zirconium doped TiO2 metal oxide nano-composites and their different properties. Here the sol-gel method is used to synthesis both the nano-composites. Nano-composites have been characterized with XRD, AFM, Zetasizer & potential and FT-IR studies. XRD study revealed good crystallinity with the size range of 30 nm – 45 nm for both nano-composites. AFM studies also revealed the same. FTIR study reports the characteristics peaks of synthesised nano-composites.


Author(s):  
Nur Munirah Safiay ◽  
Zuraida Khusaimi ◽  
Nur Amierah Mohamad Asib ◽  
Rozina Abdul Rani ◽  
Najwa Ezira Ahmed Azhar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document