Carbonylation of Aryl Halides in the Presence of Heterogeneous Catalysts

2019 ◽  
Vol 6 (2) ◽  
pp. 78-95 ◽  
Author(s):  
Béla Urbán ◽  
Máté Papp ◽  
Rita Skoda-Földes

Palladium-catalyzed carbonylation in the presence of organic and organometallic nucleophiles serves as a powerful tool for the conversion of aryl/alkenyl halides or halide equivalents to carbonyl compounds and carboxylic acid derivatives. To circumvent the difficulties in product separation and recovery and reuse of the catalysts, associated with homogeneous reactions, supported counterparts of the homogeneous palladium catalysts were developed. The review intends to summarize the huge development that has been witnessed in recent years in the field of heterogeneous carbonylation. A great plethora of supports, organic modifiers on solid surfaces stabilizing metal particles, transition metal precursors, as well as alternative sources for CO was investigated. In most cases, careful optimization of reaction conditions was carried out. Besides simple model reactions, the synthesis of carbonyl compounds and carboxylic acid derivatives from substrates with different functionalities was performed. In some cases, causes of palladium leaching were clarified with detailed investigations. The advantages of immobilized catalysts were shown by several examples. The possibility of catalystrecycling was proved besides proving that metal contamination of the products could often be kept below the detection limit. At the same time, detailed investigations should be carried out to gain a better insight into the real nature of these processes.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 460
Author(s):  
Tímea R. Kégl ◽  
László T. Mika ◽  
Tamás Kégl

Palladium-catalyzed carbonylation reactions, in the presence of nucleophiles, serve as very potent tools for the conversion of aryl and alkenyl halides or halide equivalents to carboxylic acid derivatives or to other carbonyl compounds. There are a vast number of applications for the synthesis of simple building blocks as well as for the functionalization of biologically important skeletons. This review covers the history of carbonylative coupling reactions in Hungary between the years 1994 and 2021.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


1994 ◽  
Vol 35 (38) ◽  
pp. 7097-7098 ◽  
Author(s):  
Enrique Gómez-Bengoa ◽  
Pedro Noheda ◽  
Antonio M. Echavarren

2021 ◽  
Vol 22 (18) ◽  
pp. 9861
Author(s):  
Boriss Strumfs ◽  
Romans Uljanovs ◽  
Kirils Velikijs ◽  
Peteris Trapencieris ◽  
Ilze Strumfa

Aziridination reactions represent a powerful tool in aziridine synthesis. Significant progress has been achieved in this field in the last decades, whereas highly functionalized aziridines including 3-arylated aziridine-2-carbonyl compounds play an important role in both medical and synthetic chemistry. For the reasons listed, in the current review we have focused on the ways to obtain 3-arylated aziridines and on the recent advances (mainly since the year 2000) in the methodology of the synthesis of these compounds via aziridination.


Sign in / Sign up

Export Citation Format

Share Document