Can Rust Spread Through Temporary Contact?

Author(s):  
Charles Micallef

Background: Despite the process of rusting being well known, it was uncertain whether rust was contagious or not through temporary contact that is, involving no permanent bonding. Objective: The study investigated whether rust could be transmitted through temporary contact using controls. Methods: Eight rusted steel wool rolls, each less than 3.50 g were staggeringly arranged in groups of four onto two non-rusted steel plates, each measuring 400 x 200 mm, with control cells in between. After 10 days, rust stains formed on the plates and the rolls were removed. The conspicuous stains were monitored every month by means of manual tracing. After six monthly observations, the first month tracings were superimposed onto each respective plate. Results: Although intrinsic rust had formed on the control and experimental cells, the original stains remained constant in shape and size. Conclusion: Rust is probably not transmitted to other metals by simple contact

2016 ◽  
Vol 857 ◽  
pp. 154-158 ◽  
Author(s):  
P.V. Gokul ◽  
Bennet Kuriakose ◽  
Salini Theres N. Kurian

Plates are the important structural members finding applications in the field of structural engineering, ship technology and aerospace engineering. Holes are often provided in the plates for the purpose of services and aesthetics. Pitting corrosion can also induce holes on the plates, thereby inducing stress concentration and redistribution of stress around the hole. In this paper, the popular finite element software ANSYS is used for the static analysis of thin plates with holes. The influence of shape and size of the hole on the stress distribution of plate is also analysed. The study can form foundation for strength assessment of steel plates with holes, especially residual strength of plates subjected to pitting corrosion.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


The article is devoted to the actual problem of assigning optimal parameters for connecting steel plates on cover plates with angular welds that are widely used in construction practice. The article presents the results of a comprehensive study of operation of a welded assembly of the plates connection on cover plates. An algorithm is proposed for determining the optimal parameters of a welded joint with fillet welds on the cover plates, which makes it possible to obtain a strength balanced connection. The results of full-scale tensile tests of models were presented. These results confirmed the correctness of the assumed design assumptions, and made it possible to obtain a form of destruction, not characteristic and not described in the normative literature, expressed by cutting the main elements along the length of the overlap in the joint. The possibility of such a form of destruction was confirmed by the results of numerical research in a nonlinear formulation. The optimal parameters of the nodal welded joint determined by engineering calculation are confirmed by experimental studies, as well as by the results of numerical experiments on models of calculation schemes, taking into account the physical nonlinearity of the material operation. The obtained dependence for determining the bearing capacity of the joint by the cut-off mechanism and the expression for limiting the overlap length of the cover plates will make it possible to predict the nature of the fracture and design equally strong joints.


2013 ◽  
Vol 41 (4) ◽  
pp. 232-246
Author(s):  
Timo Völkl ◽  
Robert Lukesch ◽  
Martin Mühlmeier ◽  
Michael Graf ◽  
Hermann Winner

ABSTRACT The potential of a race tire strongly depends on its thermal condition, the load distribution in its contact patch, and the variation of wheel load. The approach described in this paper uses a modular structure consisting of elementary blocks for thermodynamics, transient excitation, and load distribution in the contact patch. The model provides conclusive tire characteristics by adopting the fundamental parameters of a simple mathematical force description. This then allows an isolated parameterization and examination of each block in order to subsequently analyze particular influences on the full model. For the characterization of the load distribution in the contact patch depending on inflation pressure, camber, and the present force state, a mathematical description of measured pressure distribution is used. This affects the tire's grip as well as the heat input to its surface and its casing. In order to determine the thermal condition, one-dimensional partial differential equations at discrete rings over the tire width solve the balance of energy. The resulting surface and rubber temperatures are used to determine the friction coefficient and stiffness of the rubber. The tire's transient behavior is modeled by a state selective filtering, which distinguishes between the dynamics of wheel load and slip. Simulation results for the range of occurring states at dry conditions show a sufficient correlation between the tire model's output and measured tire forces while requiring only a simplified and descriptive set of parameters.


1997 ◽  
Author(s):  
Nobuyuki Abe ◽  
Yasushi Kunugita ◽  
Masakazu Hayashi ◽  
Yoshiaki Tsuchitani

Author(s):  
Abe Nobuyuki ◽  
Nakagawa Naoki ◽  
Tsukamoto Masahiro ◽  
Nakacho Keiji ◽  
Sogabe Michihiro ◽  
...  

Author(s):  
Kanji EMOTO ◽  
Katsuhiko MIYATA ◽  
Akito TAKAHASHI ◽  
Michinaga SUZUKI ◽  
Toshihiro SEKINE
Keyword(s):  

Author(s):  
Elvys Reis ◽  
Caroline Martins Calisto ◽  
Ana Lydia Castro e Silva ◽  
hermes carvalho

Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


Sign in / Sign up

Export Citation Format

Share Document