In-silico Discovery of Fungal Metabolites Bergenin, Quercitrin and Dihydroartemisinin as Potential Inhibitors against Main Protease of SARS-CoV-2

Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ravi S Patel ◽  
Akash G Vanzara ◽  
Nimisha R Patel ◽  
Ajit M Vasava ◽  
Sachin M Patil ◽  
...  

Background: Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (Mpro) using an in-silico analysis. Methods: Resolution Liquid Chromatography Mass Spectrometry analysis (HR-LCMS) was used for the bioactive profiling of ethanolic crude extract of Dictyophora indusiata, Geastrum triplex and Cyathus stercoreus. Of which, only bergenin (D. indusiata), quercitrin (G. triplex) and dihydroartemisinin (C. stercoreus) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 Mpro, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2. Results: Total 118 bioactive compounds were analyzed from the crude extract of used fungi and identified using HR LC/MS analysis. The binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively after docking analysis. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Conclusion: Present investigation suggests that these three compounds may be used as alternative inhibitors against SARSCoV-2 Mpro. However, further research is necessary to assess in vitro potential of these compounds. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.

Author(s):  
Ravi Patel ◽  
Akash Vanzara ◽  
Nimisha Patel ◽  
Ajit Vasava ◽  
Sachin Patil ◽  
...  

Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (M<sup>pro</sup>) using an <i>in-silico</i> analysis. Nearly 118 bioactive compounds were extracted from <i>Dictyophora indusiata</i>, <i>Geassstrum triplex</i> and <i>Cyathus stercoreus </i>and identified using HR LC/MS analysis. Of which, only bergenin (<i>D. indusiata</i>), quercitrin (<i>G. triplex</i>) and dihydroartemisinin (<i>C. stercoreus</i>) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 M<sup>pro</sup>, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2 and the binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Present investigation suggests that these three drugs may be used as alternative inhibitors against SARS-CoV-2 M<sup>pro</sup>. However, further research is necessary to assess <i>in vitro</i> potential of these drugs. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.


Author(s):  
Ravi Patel ◽  
Akash Vanzara ◽  
Nimisha Patel ◽  
Ajit Vasava ◽  
Sachin Patil ◽  
...  

Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (M<sup>pro</sup>) using an <i>in-silico</i> analysis. Nearly 118 bioactive compounds were extracted from <i>Dictyophora indusiata</i>, <i>Geassstrum triplex</i> and <i>Cyathus stercoreus </i>and identified using HR LC/MS analysis. Of which, only bergenin (<i>D. indusiata</i>), quercitrin (<i>G. triplex</i>) and dihydroartemisinin (<i>C. stercoreus</i>) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 M<sup>pro</sup>, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2 and the binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Present investigation suggests that these three drugs may be used as alternative inhibitors against SARS-CoV-2 M<sup>pro</sup>. However, further research is necessary to assess <i>in vitro</i> potential of these drugs. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.


2021 ◽  
Vol 67 (2) ◽  
pp. 1-8
Author(s):  
Tomasz M. Karpiński ◽  
Marek Kwaśniewski ◽  
Marcin Ożarowski ◽  
Rahat Alam

Summary Introduction: The main protease (Mpro) and the papain-like protease (PLpro) are essential for the replication of SARS-CoV-2. Both proteases can be targets for drugs acting against SARS-CoV-2. Objective: This paper aims to investigate the in silico activity of nine xanthophylls as inhibitors of Mpro and PLpro. Methods: The structures of Mpro (PDB-ID: 6LU7) and PLpro (PDB-ID: 6W9C) were obtained from RCSB Protein Data Bank and developed with BIOVIA Discovery Studio. Active sites of proteins were performed using CASTp. For docking the PyRx was used. Pharmacokinetic parameters of ADMET were evaluated using SwissADME and pkCSM. Results: β-cryptoxanthin exhibited the highest binding energy: –7.4 kcal/mol in the active site of Mpro. In PLpro active site, the highest binding energy had canthaxanthin of –9.4 kcal/mol, astaxanthin –9.3 kcal/mol, flavoxanthin –9.2 kcal/mol and violaxanthin –9.2 kcal/mol. ADMET studies presented lower toxicity of xanthophylls in comparison to ritonavir and ivermectin. Conclusion: Our findings suggest that xanthophylls can be used as potential inhibitors against SARS-CoV-2 main protease and papain-like protease.


Author(s):  
Azza H. Harisna ◽  
Rizky Nurdiansyah ◽  
Putri H. Syaifie ◽  
Dwi W. Nugroho ◽  
Kurniawan E. Saputro ◽  
...  

2021 ◽  
Author(s):  
Nemanja Djokovic ◽  
Dusan Ruzic ◽  
Teodora Djikic ◽  
Sandra Cvijic ◽  
Jelisaveta Ignjatovic ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39455-39466
Author(s):  
Nanik Siti Aminah ◽  
Muhammad Ikhlas Abdjan ◽  
Andika Pramudya Wardana ◽  
Alfinda Novi Kristanti ◽  
Imam Siswanto ◽  
...  

An investigation on dolabellane derivatives to understand their potential in inhibiting the SARS-CoV-2 main protease (3CLpro) using an in silico approach.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaeyong Lee ◽  
Liam J. Worrall ◽  
Marija Vuckovic ◽  
Federico I. Rosell ◽  
Francesco Gentile ◽  
...  

AbstractSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.


Sign in / Sign up

Export Citation Format

Share Document