The Effect of HIP Treatment on the Mechanical Properties of Titanium Aluminide Additive Manufactured by EBM

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1577
Author(s):  
A. Raja Annamalai ◽  
Muthe Srikanth ◽  
Raunak Varshney ◽  
Mehta Yash Ashokkumar ◽  
Swarup Kumar Patro ◽  
...  

Titanium aluminide (TiAl) is one of the most promising materials for aerospace applications. It is a suitable replacement for nickel-based superalloys predominantly used in these applications. Titanium aluminide with superior processability is the main task in carrying out this work. A less brittle TiAl alloy was fabricated using spark plasma sintering by adding the nominal composition (2.5, 5, and 7.5 wt.%) of manganese (Mn) to Ti-48Al-2Cr-2Nb. The samples were sintered at 1150 °C using spark plasma sintering (SPS), which helped produce highly dense models with fine grain sizes at the high heating rate (here, 100 °C per minute). The effects produced by Mn additions on the densification, mechanical properties (yield strength, hardness, and % elongation), and microstructure of the Ti aluminide alloys are studied. Scanning electron microscopy (SEM) has been used to explore the sintered samples’ microstructures. The alloyed materials are entirely dissolved in the gamma matrix due to the manganese approaching its melting point. XRD and SEM analysis confirmed the new intermetallic related to Mn neither with titanium nor aluminum. The enhancement of % elongation at break is evident for the little improvement in the ductility of TiAl by the addition of Mn. The samples’ tensile fracture nature is also evidence for enhancement in the alloy’s % elongation.


2003 ◽  
Vol 49 (10) ◽  
pp. 1047-1052 ◽  
Author(s):  
Valery Imayev ◽  
Renat Imayev ◽  
Andrey Kuznetsov

Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


1996 ◽  
Vol 460 ◽  
Author(s):  
H. Clemens ◽  
W. Glatz ◽  
N. Eberhardt ◽  
H.-P. Martinz ◽  
W. Knabl

ABSTRACTIntermetallic γ-TiAl based alloys (”γ-alloys”) have a great potential to become important materials for advanced applications in aerospace, automotive and related industries. Research and development on γ-alloys have progressed significantly within the last decade. This research has led to a better understanding of the fundamental correlations between alloy composition and microstructure, processing behaviour and mechanical properties. This paper describes the progress in sheet rolling of γ-TiAl based alloys on industrial scale. Employing an advanced hot-rolling process sheets with lengths >1000 mm have been rolled. Furthermore, first results of foil rolling are presented. The mechanical properties of γ-TiAl sheet material with regard to processing route, alloy composition and microstructure are summarized and discussed. Sheet forming by means of superplastic forming and conventional metal forming techniques has successfully been conducted. Different joining techniques have been studied for γ-alloys including solid-state diffusion bonding. The oxidation resistance of γ-alloys is higher than that of Ti-alloys, however, for long-term applications at temperatures >700°C the need for reliable oxidation protective coatings is anticipated. Recent results of cyclic oxidation tests on coated γ-TiAl sheet are presented. Finally, the results of a stability test conducted on a γ-TiAl panel at 750°C are summarized.


Sign in / Sign up

Export Citation Format

Share Document