Aerogels as Catalyst Support for Fuel Cells

Environmental pollution caused by the extensive use of fossil fuels and global energy crisis have increased the need to look for renewable energy sources that not only supplement the global energy needs but are economical and environment friendly, thus making way for fuel cells (FCs) as one of the alternatives for replacing the existing fossil fuel based machinery. Nevertheless, there are several factors that account for the hindrance of FCs on a large scale, one of them being the sluggish oxygen reduction reaction (ORR) kinetics taking place at the cathode. Aerogels are a class of promising materials that have the potential to improve the electrocatalytic activity, stability and durability of FCs when used as catalyst support. The present chapter focuses on reporting the latest developments in the field of aerogels as catalyst support for FCs.

Author(s):  
Osumanu Musah Mohammed

Renewable technologies are technically viable and economically attractive; traditional energy technology receives many investment dollars. This study examines the integration of renewable energy sources using functions that associate emissions with power generation; traditional producing units can represent these emissions. The environment friendly design has become a significant concern in the first decade of the 21st century. As a result of climate change and a limited supply of traditional energy sources (fossil fuel), the world needs to take renewable energy seriously. Renewable sources of energy are derived from the energy flow that occurs naturally in a continual manner. Many people define renewability as the ability to regenerate at a rate equal to or faster than a given energy source's depletion rate. Currently, fossil fuels are used to meet most energy needs, which should be replaced in the future by cleaner energy sources, such as renewables or nuclear energy. Building integration systems aim to replace a building element with a solar panel array to boost the RES system's viability. Renewable energy sources can be used to lessen the use of fossil fuels when certain criteria are satisfied. The use of renewable energy sources in buildings has well-understood environmental and economic benefits in this study. By relying on sustainable sources of energy, we can save as much energy as feasible.


2021 ◽  
Author(s):  
M. Amin Farkhondehfal ◽  
Juqin Zeng

The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gas emission, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals and fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emission and induce a “fuel switching” that exploits renewable energy sources. The aim of this chapter is to categorize different heterogeneous electrocatalysts which are being used for CO2 reduction, based on the desired products of the above mentioned reactions: from formic acid and carbon monoxide to methanol and ethanol and other possible by products. Moreover, a brief description of the kinetic and mechanism of the CO2 reduction reaction) and pathways toward different products have been discussed.


Author(s):  
Mahmure Övül Arıoğlu Akan ◽  
Ayşe Ayçim Selam ◽  
Seniye Ümit Oktay Fırat

Sustainability concerns resulting from the consumption of natural resources, life-threatening levels of pollution, global warming, climate change and the ever-increasing worldwide energy use have brought renewable energy sources to forefront. Given the possibility of depletion of fossil fuels in the near future, the utilization of clean and renewable energy sources have become inevitable. Consequently, governments and global organizations adopted respective regulations to ensure the production and use of renewable energy and promote the respective new investments. In the light of these developments, the aim of this study is to conduct a detailed review and evaluation on the current literature and global energy statistics. The respective projects, binding regulations, incentives, and pricing mechanisms have also been studied to analyze and compare the renewable energy policies adopted worldwide. Ultimately, the goal is to make certain suggestions and lay out possible solutions regarding global energy problems.


Author(s):  
Andrew Davies ◽  
Rasam Soheilian ◽  
Chuanwei Zhuo ◽  
Yiannis Levendis

As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and look for alternative options as an energy source. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and may thus reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they are considered to be carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology is described herein to further address our increasing energy needs and, at the same time, utilize our biomass streams in an environmentally-benign manner. More specifically, a multi-step process/device is outlined to accept biomass, of various types and shapes, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolyticaly, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into clean thermal energy and, eventually to electricity.


2018 ◽  
Vol 27 (05) ◽  
pp. 1830002 ◽  
Author(s):  
C. Subramani ◽  
K. R. Ramanand

The current energy scenario in the world considering the overconsumption of fossil fuels as well as its disastrous impact on environment calls for the promotion of renewable resources to take part in the growth towards sustainable development. With the penetration of such intermittent renewable energy sources into the existing grid, it not only enhanced the capability of the grid but also posed challenges regarding system stability. A practical solution to these problems by means of a new technological concept called “electric springs” is presented in this paper which enhances the system stability and provides voltage regulation for the same. Reviewing the various analyses, control methodologies as well as applications regarding the electric spring provides the confidence to further analyze its scope in large-scale power distribution system.


Author(s):  
Debajyoti Bose

Hydrogen is the cleanest fuel known to man and the most prominent alternative to carbon-based fuels, although it is not available as a free gas on earth, it can be produced from various sources using the correct combination of pressure and temperature. The deep time that our planet has given life has allowed it to grow from a tiny seed of genetic possibility to a planet wide web of complexity we are part of today, where today heating, refrigeration, telecommunication and appliances have become vital in everyday life. Production of electricity using fossil fuels has been under the scanner for quite some time now because of their availability and effects on the environment hydrogen emerges out in this scenario as the future fuel and setting the stage towards the hydrogen economy. The clean nature of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. This paper reviews the existing infrastructure of hydrogen production and storage, while simultaneously explores the reason why it will be an inevitability in the near future to meet our ever increasing energy needs.


Sign in / Sign up

Export Citation Format

Share Document