Environmentally-Benign Conversion of Biomass Residues to Electricity

Author(s):  
Andrew Davies ◽  
Rasam Soheilian ◽  
Chuanwei Zhuo ◽  
Yiannis Levendis

As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and look for alternative options as an energy source. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and may thus reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they are considered to be carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology is described herein to further address our increasing energy needs and, at the same time, utilize our biomass streams in an environmentally-benign manner. More specifically, a multi-step process/device is outlined to accept biomass, of various types and shapes, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolyticaly, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into clean thermal energy and, eventually to electricity.

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Andrew Davies ◽  
Rasam Soheilian ◽  
Chuanwei Zhuo ◽  
Yiannis A. Levendis

As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multistep process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of biomass into “clean” thermal energy and, eventually to electricity.


Author(s):  
Saber Talebi Anaraki ◽  
Andrew Davies ◽  
Chuanwei Zhuo ◽  
Yiannis A. Levendis

As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications. Plastics, a petroleum-based product, are widely used in manufacturing disposable products and have created a solid waste issue. Due to their abundant supply, and given their high energy content, their use for power generation is of technological interest. However, whereas waste plastics have found limited use in incineration, such a conventional direct combustion technique is ill-controlled and produces considerable amounts of health-hazardous airborne compounds. Thus, an alternative technology is proposed herein to further address our increasing energy needs and, at the same time, utilize our waste plastics streams in an environmentally-benign manner. More specifically, a multi-step process/device is proposed to accept post-consumer plastics, of various types and shapes, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the plastics are liquefied, pyrolyzed, mixed with air, ignited and, finally, burned forming pre-mixed low-emission flames. Combustion is thus indirect, since the solid polymer is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into clean thermal energy and, eventually to electricity.


Environmental pollution caused by the extensive use of fossil fuels and global energy crisis have increased the need to look for renewable energy sources that not only supplement the global energy needs but are economical and environment friendly, thus making way for fuel cells (FCs) as one of the alternatives for replacing the existing fossil fuel based machinery. Nevertheless, there are several factors that account for the hindrance of FCs on a large scale, one of them being the sluggish oxygen reduction reaction (ORR) kinetics taking place at the cathode. Aerogels are a class of promising materials that have the potential to improve the electrocatalytic activity, stability and durability of FCs when used as catalyst support. The present chapter focuses on reporting the latest developments in the field of aerogels as catalyst support for FCs.


Author(s):  
H. Saadaoui ◽  
A. Ghennioui ◽  
B. Ikken ◽  
H. Rhinane ◽  
M. Maanan

<p><strong>Abstract.</strong> Renewable energy sources are at the forefront of political discussions around the world because of the scarcity of fossil fuels and climate change caused by the accumulation of greenhouse gases. By 2030, Morocco will cover 52% of these energy needs through renewable energies, in order to preserve the environment (COP 22). This paper aims to estimate the potential of photovoltaic solar energy from flat roofs in the city of Ben Guerir, Morocco using remote sensing and GIS data. To achieve this goal, vector orthophoto resulting from the photogrammetric restitution acquired in 2015 were used to generate a 3D model (DSM). The annual solar irradiation is calculated by the analyser of the solar tool. Each roof is calculated based on algorithms for the most common solar panel technologies (mono-si and poly-si). The applicability of this methodology has been demonstrated in the urban area of Benguerir, Morocco, and can be widespread in any other region of the world. The results obtained for a total roofing surface of 135&amp;thinsp;Ha, i.e. more than 345&amp;thinsp;Gwh of electricity annually generate. For an average roof of 60&amp;thinsp;m<sup>2</sup> that could supply 5 to 6 households; A planned investment between 118,218 and 167,296&amp;thinsp;DH, and an annual maintenance charge of 2%. This study may be an initial assessment of solar potential in the city, which can be used to support the management decision regarding investment in the urban solar system.</p>


Author(s):  
Roshani Goel

India&rsquo;s energy needs are in demand with the increase in energy and other electric uses which is highest among the world. There are sectors which heavily rely on energy generated by fossil fuels but there is also seen a paradigm shift towards renewable energy sources. If India continues to rely on the former then they end up blocking development in energy system meeting uncertainties and face difficulties in supply of fossil fuels. To meet the fast-growing economy, India needs to supply the energy 3-4 times more of what they are supplying now. Government of India has become aware of the situation and has started facilitating polices in action towards a sustainable energy. As of 2019, India&rsquo;s on grid renewable energy capacity is 85.9 GW. Government is working to establish 500 GW of renewable energy source by 2030.


2020 ◽  
Author(s):  
Ayşe Handan Dökmeci

Fast consumption, increasing energy needs, unplanned urbanization, and unconscious discharge of industrial wastes cause pollution of air, soil, food and water resources. Among these pollutants, heavy metals and metalloids are not biodegradable and accumulate in compartments such as water, soil and plants, threatening human and environmental health. Monitoring studies show that heavy metals such as arsenic, lead, mercury, cadmium, nickel, zinc, copper, chromium and trace elements are in first place according to their availability in the environment. Preventive and remedial measures should be taken to reduce the effects of heavy metals. Legal regulations, monitoring studies, the use of soluble and non-toxic compounds in environmental compartments (air, water, soil and plants) in industrial processes, heavy metal-free pesticides, appropriate wastewater treatment plants and use of renewable energy sources instead of fossil fuels are among the priority measures to reduce concentrations of heavy metals in the environment. As a bioremediation approach, removing toxic wastes from the environment by using bioaccumulatory organisms such as plants or mussels maintains its importance among studies aimed at recovery. Studies have shown that integrated methods - especially the combination of suitable plants and microorganisms - are very effective in mitigating the effect of heavy metals in the environment.


2021 ◽  
Vol 239 ◽  
pp. 00012
Author(s):  
Ahmad Tamim Mehrad

Energy generation in Afghanistan is limited and heavily dependent on fossil fuels and imported electricity. Due to rapid population growth and progress in the industry, services, and agriculture sectors, the existing energy sources are not fulfilling the current energy needs of the country. Meanwhile, there is a big gap between power supply and demand, which led to an energy shortage in Afghanistan. Consequently, there is a need to develop power generation and assure energy sustainability by concentrating on renewable energy sources. This paper aims to analyze the theoretical, practical, and economic potential of solar energy in Afghanistan with the main focus on PV power technology. Power generation from solar sources is theoretically, practically, and economically suitable for Afghanistan and can be a perfect solution for the energy shortage in the country. The Afghan government should consider developing solar energy as a priority for energy security, socio-economic development, and improving the quality of life in Afghanistan.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1790 ◽  
Author(s):  
Baglan Bakbolat ◽  
Chingis Daulbayev ◽  
Fail Sultanov ◽  
Renat Beissenov ◽  
Arman Umirzakov ◽  
...  

The growth of industrialization, which is forced to use non-renewable energy sources, leads to an increase in environmental pollution. Therefore, it is necessary not only to reduce the use of fossil fuels to meet energy needs but also to replace it with cleaner fuels. Production of hydrogen by splitting water is considered one of the most promising ways to use solar energy. TiO2 is an amphoteric oxide that occurs naturally in several modifications. This review summarizes recent advances of doped TiO2-based photocatalysts used in hydrogen production and the degradation of organic pollutants in water. An intense scientific and practical interest in these processes is aroused by the fact that they aim to solve global problems of energy conservation and ecology.


2018 ◽  
Vol 3 (12) ◽  
pp. 112-118
Author(s):  
Van Huong Dong

Fossil fuels such as coal, oil, and gas meet most of the energy needs of people, but fossil fuels are unsustainable. The use of fossil fuels is one of the main causes of climate change and it has a serious impact on human health. In addition, these fuels are depleting, so the research and use of renewable energy sources such as wind, solar, geothermal or biomass is a necessity. In this paper, we mention some of the main reasons for promoting the development of renewable energy, the potential and the reality of renewable energy exploitation in Vietnam. In addition, we also outline the main reasons that hinder the development and exploitation of renewable energy sources in Vietnam.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1576-1604
Author(s):  
Ahmed A. Hassan ◽  
Mohamed El Habrouk ◽  
Samir Deghedie

SUMMARYFossil fuel sources are well suited to fulfill the energy needs of human beings. Unfortunately, there are some limitations and disadvantages pertaining to fossil fuels, some of which are drastic. The main issues are: firstly, there is a finite supply of these fuels, eventually this supply will be exhausted; secondly, burning fossil fuels contributes to global warming, leading to disastrous consequences for the environment and the health of humans. Switching to renewable energy sources is the viable solution to the aforementioned issues. Robots bring numerous benefits in a wide variety of applications. Introducing robots to production environments and other applications results in a remarkable improvement in terms of productivity and efficiency. In this paper, the integration between robots and renewable energy sources is discussed. In other words, two main points are investigated: (1) how can renewable energy be a viable source of energy for robots and (2) how can the renewable energy industry benefit from utilizing robots in the execution of renewable energy-related tasks. Some of the recent developments concerning the integration between robots and renewable energy are reviewed. In addition, more opportunities and expected advancements are also discussed.


Sign in / Sign up

Export Citation Format

Share Document