The Hydrogen Alternative

Author(s):  
Debajyoti Bose

Hydrogen is the cleanest fuel known to man and the most prominent alternative to carbon-based fuels, although it is not available as a free gas on earth, it can be produced from various sources using the correct combination of pressure and temperature. The deep time that our planet has given life has allowed it to grow from a tiny seed of genetic possibility to a planet wide web of complexity we are part of today, where today heating, refrigeration, telecommunication and appliances have become vital in everyday life. Production of electricity using fossil fuels has been under the scanner for quite some time now because of their availability and effects on the environment hydrogen emerges out in this scenario as the future fuel and setting the stage towards the hydrogen economy. The clean nature of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. This paper reviews the existing infrastructure of hydrogen production and storage, while simultaneously explores the reason why it will be an inevitability in the near future to meet our ever increasing energy needs.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Liuzhang Ouyang ◽  
Jun Jiang ◽  
Kang Chen ◽  
Min Zhu ◽  
Zongwen Liu

AbstractAs an environmentally friendly and high-density energy carrier, hydrogen has been recognized as one of the ideal alternatives for fossil fuels. One of the major challenges faced by “hydrogen economy” is the development of efficient, low-cost, safe and selective hydrogen generation from chemical storage materials. In this review, we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials, such as borohydrides, Mg-based and Al-based materials, and the highly efficient regeneration of borohydrides. Unfortunately, most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield. While a number of strategies including catalysis, alloying, solution modification, and ball milling have been developed to overcome these drawbacks, the high costs required for the “one-pass” utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications. Therefore, it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport, production and storage of hydrogen in a fuel cell-based hydrogen economy.


2021 ◽  
Author(s):  
Peter Adam

Abstract Hydrogen holds enormous potential in helping the world achieve its decarbonization goals and is set to play a key role in the Energy Transition. However, two central building blocks are needed to make the hydrogen economy a reality: 1) a sufficient source of emissions-free (i.e., blue or green) hydrogen production and 2) a needs-based transportation and storage network that can reliably and cost-effectively supply hydrogen to end-users. Given the high costs associated with developing new transportation infrastructure, many governments, pipeline operators, and regulatory bodies have begun exploring if it is both possible and economical to convert existing natural gas (i.e., methane) infrastructure for hydrogen operation. This paper outlines opportunities and technical challenges associated with such an endeavor – with a particular focus on adaptation requirements for rotating equipment/compressor drive trains and metallurgical and integrity considerations for pipelines.


2017 ◽  
Vol 4 (1) ◽  
pp. 25 ◽  
Author(s):  
John Vourdoubas ◽  
Vasiliki K. Skoulou

The exploitation of rich in sugars lingo-cellulosic residue of carob pods for bio-ethanol and bio-electricity generation has been investigated. The process could take place in two (2) or three (3) stages including: a) bio-ethanol production originated from carob pods, b) direct exploitation of bio-ethanol to fuel cells for electricity generation, and/or c) steam reforming of ethanol for hydrogen production and exploitation of the produced hydrogen in fuel cells for electricity generation. Surveying the scientific literature it has been found that the production of bio-ethanol from carob pods and electricity fed to the ethanol fuel cells for hydrogen production do not present any technological difficulties. The economic viability of bio-ethanol production from carob pods has not yet been proved and thus commercial plants do not yet exist. The use, however, of direct fed ethanol fuel cells and steam reforming of ethanol for hydrogen production are promising processes which require, however, further research and development (R&D) before reaching demonstration and possibly a commercial scale. Therefore the realization of power generation from carob pods requires initially the investigation and indication of the appropriate solution of various technological problems. This should be done in a way that the whole integrated process would be cost effective. In addition since the carob tree grows in marginal and partly desertified areas mainly around the Mediterranean region, the use of carob’s fruit for power generation via upgrading of its waste by biochemical and electrochemical processes will partly replace fossil fuels generated electricity and will promote sustainability.


Author(s):  
Marco Gambini ◽  
Michela Vellini

Hydrogen technology is becoming ever more relevant because hydrogen use can help containing greenhouse gas emission if CO2 capture and storage techniques are implemented in the hydrogen production technology (when hydrogen is produced from fossil fuels). For this reason this work aims at carrying out a comparative analysis of possible energy scenarios in urban districts: a medium-small Italian city is taken into consideration, and its energy consumptions, both for domestic and industrial use, are evaluated. The current situation, in which conventional technologies meet the energy needs, is compared to a hypothetical scenario where clean energy vectors, namely hydrogen and electricity, are utilized together with traditional primary energy supply. Hydrogen production by means of coal decarbonization is investigated, as well as hydrogen use in advanced energy systems for transport and for electric and thermal energy generation.


Environmental pollution caused by the extensive use of fossil fuels and global energy crisis have increased the need to look for renewable energy sources that not only supplement the global energy needs but are economical and environment friendly, thus making way for fuel cells (FCs) as one of the alternatives for replacing the existing fossil fuel based machinery. Nevertheless, there are several factors that account for the hindrance of FCs on a large scale, one of them being the sluggish oxygen reduction reaction (ORR) kinetics taking place at the cathode. Aerogels are a class of promising materials that have the potential to improve the electrocatalytic activity, stability and durability of FCs when used as catalyst support. The present chapter focuses on reporting the latest developments in the field of aerogels as catalyst support for FCs.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 421-428 ◽  
Author(s):  
G.W. Crabtree ◽  
M.S. Dresselhaus

AbstractThe cleanliness of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. Implementing hydrogen-powered fuel cells on a significant scale, however, requires major advances in hydrogen production, storage, and use. Splitting water renewably offers the most plentiful and climate-friendly source of hydrogen and can be achieved through electrolytic, photochemical, or biological means. Whereas presently available hydride compounds cannot easily satisfy the competing requirements for on-board storage of hydrogen for transportation, nanoscience offers promising new approaches to this challenge. Fuel cells offer potentially efficient production of electricity for transportation and grid distribution, if cost and performance challenges of components can be overcome. Hydrogen offers a variety of routes for achieving a transition to a mix of renewable fuels.


MRS Bulletin ◽  
2019 ◽  
Vol 44 (09) ◽  
pp. 684-685
Author(s):  
Prachi Patel ◽  
Kathy Ayers

The lightest element has carried a heavy burden for half a century. Expectations for the hydrogen economy, first proposed in the 1970s, have been high. But hydrogen as a renewable, low-carbon fuel for vehicles, heating, and energy storage has remained evasive, held back by high costs, low efficiency, and a lack of infrastructure and storage technologies.


Author(s):  
S. A. Sherif ◽  
F. Barbir ◽  
T. N. Veziroglu

The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness.


Sign in / Sign up

Export Citation Format

Share Document