scholarly journals Optimal Design of Tuned Mass Damper Inerter for Base-Isolated Buildings

Abstract. Tuned mass dampers (TMD) are installed in base-isolated building to suppress the excessive isolator displacement and acceleration responses of primary structure. By incorporating an inerter element into the original configuration, the seismic performance of TMD is significantly enhanced. In this work, optimal solutions of tuned mass damper inerter (TMDI) for improving the seismic resilience of base-isolated building are proposed. The analytical formulations of optimal design of TMDI are respectively developed to minimize the H2 norm of the displacement of primary structure relative to the base floor and the isolator displacement. The performance of presented optimal methods are validated by using stationary responses under the stochastic excitations. Additionally, the seismic performance of TMDI with parameters obtained from the proposed method are compared with the established methods.

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Yilun Liu ◽  
Chi-Chang Lin ◽  
Jason Parker ◽  
Lei Zuo

Energy-harvesting series electromagnetic-tuned mass dampers (EMTMDs) have been recently proposed for dual-functional energy harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. In this paper, we derive ready-to-use analytical tuning laws for the energy-harvesting series EMTMD system when the primary structure is subjected to force or ground excitations. Both vibration mitigation and energy-harvesting performances are optimized using H2 criteria to minimize root-mean-square (RMS) values of the deformation of the primary structure or maximize the average harvestable power. These analytical tuning laws can easily guide the design of series EMTMDs under various external excitations. Later, extensive numerical analysis is presented to show the effectiveness of the series EMTMDs. The numerical analysis shows that the series EMTMD more effectively mitigates the vibration of the primary structure nearly across the whole frequency spectrum, compared to that of classic TMDs. Simultaneously, the series EMTMD can better harvest energy due to its broader bandwidth effect. Beyond simulations, this paper also experimentally verifies the effectiveness of the series EMTMDs in both vibration mitigation and energy harvesting.


Author(s):  
Thuan Nguyen ◽  
Nanako Miura ◽  
Akira Sone

Tuned mass damper (TMD) device has been a popular vibration control system for moderns as high-rise building, bridge to suppress excessive vibration due to environment or human loading. Moreover, multiple tuned mass dampers have received much attention in the researched. An optimal design theory for bridge implemented with multiple TMD devices is proposed in this paper. The proposed method chooses the objective function with the constraints on the peaks which are at the same heights over frequency ranges of interest. This proposed method successfully reduces vibration of bridge traveled by a car. In a future study, we will extend the optimal design theory for the cases with more than one car and the bridge under seismic loading.


Author(s):  
Ging-Long Lin ◽  
Chi-Chang Lin ◽  
Jer-Fu Wang

Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still developing. In this paper, the application of multiple semi-active friction tuned mass dampers (SAF-MTMD) for response control of a multistory structure under seismic excitation is investigated. The friction forces of the SAF-MTMD are controllable. A non-sticking friction (NSF) controller, which is able to keep each of the TMD activated and in its slip state throughout an earthquake with arbitrary intensity, was conducted. A parametric study is performed to investigate the effectiveness of SAF-MTMD. The seismic performance of the SAF-MTMD is also compared with the single and multiple passive friction tuned mass dampers (PF-TMD/PF-MTMD). The numerical result shows that the SAF-MTMD is superior to PF-MTMD in reducing the response of the primary structure under the seismic excitation.


Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


2016 ◽  
Vol 20 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mohammad Sabbir Rahman ◽  
Md Kamrul Hassan ◽  
Seongkyu Chang ◽  
Dookie Kim

The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.


Sign in / Sign up

Export Citation Format

Share Document