A Best Fit Model for Forecasting Korea Electric Power Energy Consumption in IoT Environments

Author(s):  
Vasanth Ragu ◽  
◽  
Younghyun Kim ◽  
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6611
Author(s):  
Kazui Yoshida ◽  
Hom B. Rijal ◽  
Kazuaki Bohgaki ◽  
Ayako Mikami ◽  
Hiroto Abe

A residential cogeneration system (CGS) is highlighted because of its efficient energy usage on both the supplier and consumer sides. It generates electricity and heat simultaneously; however, there is insufficient information on the efficiency according to the condition of usage. In this study, we analysed the performance data measured by the home energy management system (HEMS) and the lifestyle data of residents in a condominium of 356 flats where fuel cell CGS was installed in each flat. The electricity generated by CGS contributed to an approximately 12% reduction in primary energy consumption and CO2 emission, and the rate of generation by the CGS in the electric power demand (i.e., contribution rate) was approximately 38%. The electricity generation was mainly affected by the use of electricity up to 4 MWh/household/year. Gas or water use also impacted electric power generation, with water use as the primary factor affecting the contribution rate. Electric power generation changes monthly, mainly based on the water temperature. From these results, we confirmed that a CGS has substantial potential to reduce energy consumption and CO2 emission in condominiums. Thus, it is recommended for installation of fuel cell CGS in existing and new buildings to contribute to the energy-saving target of the Japanese Government in the residential sector.


Author(s):  
Murizah Kassim ◽  
Maisarah Abdul Rahman ◽  
Cik Ku Haroswati Che Ku Yahya ◽  
Azlina Idris

This paper presents a research on electric power monitoring prototype mobile applications development on energy consumptions in a university campus. Electric power energy consumptions always are the issue of monitoring usage especially in a broad environment. University campus faces high used of electric power, thus crucial analysis on cause of the usage is needed. This research aims to analyses electric power usage in a university campus where implemented of few smart meters is installed to monitor five main buildings in a campus university. A Monitoring system is established in collecting electric power usage from the smart meters. Data from the smart meter then is analyzed based on energy consume on 5 buildings. Results presents graph on the power energy consume and presented on mobile applications using Live Code coding. The methodology involved the setup of the smart meters, monitoring and data collected from main smart meters, analyzed electrical consumptions for 5 buildings and mobile system development to monitor. A Live Code mobile app is designed then data collected from smart meter using ION software is published in graphs. Results presents the energy consumed for 5 building during day and night. Details on maximum and minimum energy consumption presented that show load of energy used in the campus. Result present Tower 1 saved most eenergy at night which is 65% compared to block 3 which is 8% saved energy although block 3 presents the lowest energy consumption in the working hours and non-working hours. This project is significant that can help campus facility to monitor electric power used thus able to control possible results in future implementations.


Author(s):  
Maha Yousif Hasan ◽  
Dheyaa Jasim Kadhim

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.


Author(s):  
Geetha R ◽  
Gowdhamkumar S ◽  
Yamuna ` R ◽  
S Jambulingam

Modern society has reached a point where virtually every crucial economic and social function depends on the secure and reliable operation of the electrical power and energy infrastructures. The energy consumption growth and the population growth are pushing world’s total energy consumption to double by 2050. This represents grand challenges and opportunities for power electronics and electric power systems engineers to modernize the power grid. Power electronics & systems (PEAS) technology is increasingly important for smarter distributed systems, particularly for power grid modernization. This paper discussed smart technology solutions, such as PEAS, for the changing nature of the electric power system. Specific technical challenges that are facing the power electronics and electric power systems communities are then elaborated. It is shown that we can meet the grand energy challenge by lever-aging the grid modernization efforts. To provide electric power to twice as many people does not have to increase the required environment footprint.


2014 ◽  
Vol 672-674 ◽  
pp. 1387-1392
Author(s):  
Ce Chen ◽  
Xing Qi He

Using data from 2007 to 2011 as the sample, on the base of analyzing the power consumption overall situation of Sichuan Province, the effects of Sichuan electric consumption, energy consumption characteristics factors, increase the proportion of the reasons were studied. The research results to improve the operation quality and efficiency of management, further develop the electric power market has a certain reference value.


2014 ◽  
Vol 1044-1045 ◽  
pp. 549-552
Author(s):  
Hao Ming Zhang ◽  
Ying Hai Wang ◽  
Lian Soon Peh

Abstract. Hybrid electric vehicle adopt hybrid electric power, can reduce the waster emission and energy consumption, which can solve the present problem of environmental pollution and energy consume. New type HEV based on composite electric power is proposed.To improve the performance of the system, Halbach PMSM is used instead of traditional PMSM, experimental results show its merits.


Sign in / Sign up

Export Citation Format

Share Document