Development of germplasm lines of edible bean with improved cysteine and methionine concentration

2020 ◽  
Author(s):  
Frederic Marsolais ◽  
Anfu Hou ◽  
Robert Conner

2021 ◽  
Author(s):  
Rosa Cecilia Viscarra‐Torrico ◽  
Aga Pajak ◽  
Alvaro Soler Garzón ◽  
BaiLing Zhang ◽  
Sudhakar Pandurangan ◽  
...  


Crop Science ◽  
2016 ◽  
Vol 56 (5) ◽  
pp. 2379-2389
Author(s):  
Ryan D. Huffman ◽  
Jode W. Edwards ◽  
Linda M. Pollak ◽  
M. Paul Scott


1983 ◽  
Vol 101 (3) ◽  
pp. 603-612 ◽  
Author(s):  
T. Varvikko ◽  
J. E. Lindberg ◽  
J. Setälä ◽  
Liisa Syrjälä-Qvist

SUMMARYSoya-bean meal and rapeseed meal treated with 0, 0·4 or 0·8 g formaldehyde/100 g crude protein (N × 6·25) was incubated in the rumen in nylon bags with 10 and 40 μm aperture.Disappearance of dry matter and nitrogenous compounds was reduced with increasing formaldehyde treatment.The proportion of acid-pepsin soluble nitrogen in the undegraded residues of untreated and treated soya-bean meal was similar to the original samples. For rapeseed meal the proportion of acid-pepsin soluble nitrogen in the undegraded residues decreased with increasing rumen incubation time. This reduction decreased with increasing formaldehyde treatment.Concentration of amino acids in the undegraded residues did not generally deviate from those in the original samples. However, a distinguishable decrease in the methionine concentration was observed in all the rapeseed meal samples and in glutamic acid concentration in rapeseed meal treated with 0 and 0·4 g formaldehyde/100g- crude protein.Most of the changes due to rumen incubation were smaller using the 10 μm bags than using the 40 μm bags. However, the bag pore size did not play a decisive role in the conclusions of the results given.



Crop Science ◽  
2008 ◽  
Vol 48 (5) ◽  
pp. 1705-1713 ◽  
Author(s):  
M. Paul Scott ◽  
Audrey Darrigues ◽  
Timothy S. Stahly ◽  
Kendall Lamkey


1974 ◽  
Vol 140 (3) ◽  
pp. 383-393 ◽  
Author(s):  
M. Reid ◽  
L. E. Gibb ◽  
A. A. Eddy

1. Preparations of mouse ascites-tumour cells depleted of ATP and Na+ ions accumulated l-methionine, in the presence of cyanide and deoxyglucose, from a 1mm solution containing 80mequiv. of Na+/l and about 5mequiv. of K+/l. Valinomycin increased, from about 4 to 16, the maximum value of the ratio of the cellular to extracellular concentrations of methionine formed under these conditions without markedly affecting the distributions of Na+ and of K+. Similar observations were made with 2-aminoisobutyrate, glycine and l-leucine. Increasing the extracellular concentration of K+ progressively decreased the accumulation of methionine in the presence of valinomycin. Over the physiological range of ionic gradients, the system behaved as though the absorption of methionine with Na+ was closely coupled to the electrogenic efflux of K+ through the ionophore. The process was insensitive to ouabain and so the sodium pump was probably not involved. 2. The amount of methionine accumulated during energy metabolism was similar to the optimal accumulation in the presence of valinomycin when ATP was lacking. It was also similarly affected by increasing the methionine concentration. 3. A mixture of nigericin and tetrachlorosalicylanilide mimicked the action of valinomycin. The anilide derivative inhibited the absorption of 2-aminoisobutyrate in the presence of valinomycin, but not in its absence. 4. Gramicidin inhibited methionine absorption and caused the preparations to absorb Na+ and lose K+. 5. The observations appear to verify the principle underlying the gradient hypothesis by showing that the tumour cells can efficiently couple the electrochemical gradient of Na+ to the amino acid gradient.



1988 ◽  
Vol 47 (2) ◽  
pp. 297-301 ◽  
Author(s):  
P. J. Moughan ◽  
W. H. Schultze ◽  
W. C. Smith

ABSTRACTWhole-body amino acid composition was determined in six male and six female 53-day-old New Zealand White rabbits. There were no significant sex differences in whole-body amino acid compositition except for arginine and glycine where whole-body concentrations (g/16 g N) were significantly lower in the females (P < 0·05). Overall mean whole-body essential amino acid levels (relative to lysine = 100 units) were methionine = 20; cystine = 41; histidine = 50; phenylalanine = 65; tyrosine = 50; threonine = 64; leucine = 112; isoleucine = 51; valine = 62; arginine = 109. The lysine concentration of rabbit whole-body tissue was 6·12 g/16 g N. There was close agreement between rabbit whole-body amino acid composition and corresponding published values for the rat and pig, although the rabbit whole-body cystine was high and methionine concentration low compared with the rat or pig. The rabbit whole-body amino acid pattern can be regarded as approximating an ideal balance of dietary amino acids and as such indicates discrepancies in current recommendations on the essential amino acid requirements for growth in the meat rabbit.



2003 ◽  
Vol 89 (4) ◽  
pp. 539-548 ◽  
Author(s):  
Sophie Robin ◽  
Véronique Maupoil ◽  
Frédérique Groubatch ◽  
Pascal Laurant ◽  
Alain Jacqueson ◽  
...  

The objectives of the present work were to evaluate the effect of a methionine-supplemented diet as a model of hyperhomocysteinaemia on the systolic blood pressure (BP) and vasomotor functions of aortic rings in Wistar–Kyoto (WKY) and spontaneously hypertensive rats (SHR). WKY and SHR rats, randomised into four groups, were fed a normal semisynthetic diet or a methionine (8 g/kg)-supplemented diet for 10 weeks. Systolic BP was measured non-invasively. At the end of the experiment, plasma homocysteine, methionine, cysteine and glutathione levels were determined. Vasoconstriction and vasodilatation of aortic rings were measured. The methionine-supplemented diet induced a significant increase in plasma homocysteine and methionine concentration in both WKY and SHR rats, an increase in plasma cysteine concentrations in WKY rats and an increase in the glutathione concentration in SHR. The systolic BP of WKY rats fed the methionine-supplemented diet increased significantly (P<0·01), whereas systolic BP was reduced in SHR. An enhanced aortic responsiveness to noradrenaline and a decreased relaxation induced by acetylcholine and bradykinin were observed in the WKY rats fed the methionine-enriched diet. In SHR, the bradykinin-induced relaxation was reduced, but the sodium nitroprusside response was increased. In conclusion, a methionine-enriched diet induced a moderate hyperhomocysteinaemia and an elevated systolic BP in WKY rats that was consistent with the observed endothelial dysfunction. In SHR, discrepancies between the decreased systolic BP and the vascular alterations suggest more complex interactions of the methionine-enriched diet on the systolic BP. Further investigations are needed to understand the paradoxical effect of a methionine-rich diet on systolic BP.



2000 ◽  
Vol 350 (3) ◽  
pp. 685-692 ◽  
Author(s):  
Lori M. STEAD ◽  
Margaret E. BROSNAN ◽  
John T. BROSNAN

Recent evidence suggests that an increased plasma concentration of the sulphur amino acid homocysteine is a risk factor for the development of vascular disease. The tissue(s) responsible for homocysteine production and export to the plasma are not well known. However, given the central role of the liver in amino acid metabolism, we developed a rat primary hepatocyte model in which homocysteine (and cysteine) production and export were examined. The dependence of homocysteine export from incubated hepatocytes on methionine concentration fitted well to a rectangular hyperbola, with half-maximal homocysteine export achieved at methionine concentrations of approx. 0.44mM. Hepatocytes incubated with 1mM methionine and 1mM serine (a substrate for the transulphuration pathway of homocysteine removal) produced and exported significantly less homocysteine (25–40%) compared with cells incubated with 1mM methionine alone. The effects of dietary protein on homocysteine metabolism were also examined. Rats fed a 60% protein diet had a significantly increased total plasma homocysteine level compared with rats fed a 20% protein diet. Invitro effects of dietary protein were examined using hepatocytes isolated from animals maintained on these diets. When incubated with 1mM methionine, hepatocytes from rats fed the high protein diet exported significantly more homocysteine compared with hepatocytes from rats fed the normal protein diet. Inclusion of serine significantly lowered homocysteine export in the normal protein group, but the effect was more marked in the high protein group. Invivo effects of serine were also examined. Rats fed a high protein diet enriched with serine had significantly lower total plasma homocysteine (25–30%) compared with controls. These data indicate a significant role for the liver in the regulation of plasma homocysteine levels.



2006 ◽  
Vol 95 (5) ◽  
pp. 879-888 ◽  
Author(s):  
F. Hirche ◽  
A. Schröder ◽  
B. Knoth ◽  
G. I. Stangl ◽  
K. Eder

Methionine has been shown to increase plasma cholesterol in animals. In the present study, mechanisms were investigated by which methionine could alter cholesterol metabolism. In the first experiment, forty growing rats were fed four casein-based diets differing in methionine content (2·6, 3·5, 4·5 or 6·0 g/kg) for 14 d. In the second experiment, isolated rat hepatocytes were incubated in media supplemented with 50, 100 or 200 μmol/l methionine. Dietary methionine tended to increase plasma homocysteine concentrations in the rats (P=0·058). A weak positive correlation between circulating homocysteine and plasma cholesterol was observed (R20·27, P<0·01). Rats fed 3·5 g/kg or more of methionine had higher concentrations of cholesterol in their plasma, in lipoprotein fractions of density (ρ kg/l) 1·006 < ρ<, 1·063 and ρ>. 1·063, and in liver than rats fed 2·6 g/kg methionine. Rats fed 6 g/kg methionine had a higher hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol-7α-hydroxylase than rats fed less methionine. The phosphatidylcholine:phosphatidylethanolamine ratio in rat liver increased with rising dietary methionine concentration; the relative mRNA concentrations of phosphatidylethanolamine N-methyltransferase and cystathionine β-synthase remained unaffected. Hepatocytes incubated in media supplemented with 100 or 200 μmol/l methionine had a higher cholesterol synthesis than hepatocytes incubated in a medium supplemented with 50μmol/l methionine; the LDL uptake in hepatocytes was independent of the methionine concentration of the medium. In conclusion, the present study suggests that dietary methionine induces hypercholesterolaemia at least in part via an enhanced hepatic cholesterol synthesis.



Sign in / Sign up

Export Citation Format

Share Document