Development and Use of Whole Plant Simulation Modeling as a Process Control Tool for Operating Enhanced Nutrient Removal Facilities

2009 ◽  
Vol 2009 (4) ◽  
pp. 666-695
Author(s):  
Thor Young ◽  
John V. Stullken ◽  
Dipankar Sen ◽  
Doug Abbott
2021 ◽  
Vol 114 ◽  
pp. 104878
Author(s):  
Shumpei Kubosawa ◽  
Takashi Onishi ◽  
Yoshimasa Tsuruoka

2020 ◽  
Vol 142 ◽  
pp. 107397
Author(s):  
Shifa Wu ◽  
Xu Yan ◽  
Xinyu Wei ◽  
Fuyu Zhao ◽  
Shripad Revankar

2004 ◽  
Vol 50 (6) ◽  
pp. 69-70 ◽  
Author(s):  
A. Seco ◽  
J. Ribes ◽  
J. Serralta ◽  
J. Ferrer

This paper presents the results of the work carried out by the CALAGUA Group on Mathematical Modelling of Biological Treatment Processes: the Biological Nutrient Removal Model No.1. This model is based on a new concept for dynamic simulation of wastewater treatment plants: a unique model can be used to design, simulate and optimize the whole plant, as it includes most of the biological and physico-chemical processes taking place in all treatment operations. The physical processes included are: settling and clarification processes (flocculated settling, hindered settling and thickening), volatile fatty acids elutriation and gasÐliquid transfer. The chemical interactions included comprise acidÐbase processes, where equilibrium conditions are assumed. The biological processes included are: organic matter, nitrogen and phosphorus removal; acidogenesis, acetogenesis and methanogenesis. Environmental conditions in each operation unit (aerobic, anoxic or anaerobic) will determine which bacterial groups can grow. Thus, only the model parameters related to bacterial groups able to grow in any of the operation units of a specific WWTP will require calibration. One of the most important advantages of this model is that no additional analysis with respect to ASM2d is required for wastewater characterization. Some applications of this model have also been briefly explained in this paper.


2017 ◽  
Vol 265 ◽  
pp. 1110-1115 ◽  
Author(s):  
V.G. Shibakov ◽  
D.L. Pankratov ◽  
R. Khairullin

The significance matrix for the parameters of “material-billet-equipment-process-tool-personnel-environment” system was compiled using the systems approach to the assurance of forging dimensional accuracy, and the expert analysis revealed the most significant process parameters that affect the accuracy. The application of simulation modeling helped to establish the dependence of forging force on the dimensions of an incoming billet. The paper suggests a solution to increase the accuracy of the sized forgings.


Author(s):  
J. Birchley

Calculations of PHEBUS FPT-1 are performed in the frame of CSNI International Standard Problem ISP-46. The objective of ISP-46 is to assess the capability of computer codes to provide an integral simulation of a severe accident in a Pressurised Water Reactor (PWR), from the initial stages of core heat-up to the behaviour of released fission products in the containment. The present calculations are performed using MELCOR, chosen as the main tool for assessment of Swiss nuclear plants by virtue of its whole-plant simulation capability, using modelling practices as similar as possible to those used in plant analyses. The calculations cover the bundle heat-up, degradation, the release, transport and retention of fission products and other materials, and the thermal-hydraulic and aerosol behaviour in the containment. Comparison between a best-estimate case and experiment demonstrates the code’s ability to capture most aspects of the sequence with fair to good accuracy. Uncertainties remain, particularly in regard to core degradation, and the chemistry and transport of fission products. Weaknesses of code models in these areas largely reflect limitations in current knowledge.


2011 ◽  
Vol 2011 (10) ◽  
pp. 5405-5421
Author(s):  
Ronald G. Schuyler ◽  
Joseph R. Tamburini ◽  
Steven J. Tamburini

Sign in / Sign up

Export Citation Format

Share Document