Flash Flood Prediction on Shoal Creek: or Why Radar Rainfall?

2010 ◽  
Vol 2010 (6) ◽  
pp. 193-200
Author(s):  
Baxter Vieux ◽  
Jean Vieux ◽  
Susan Janek ◽  
Janna Renfro
2009 ◽  
Vol 32 (7) ◽  
pp. 1066-1076 ◽  
Author(s):  
Efrat Morin ◽  
Yael Jacoby ◽  
Shilo Navon ◽  
Erez Bet-Halachmi

2008 ◽  
Vol 41 (11) ◽  
pp. 1153-1162 ◽  
Author(s):  
Won-Il Kim ◽  
Kyoung-Doo Oh ◽  
Won-Sik Ahn ◽  
Byong-Ho Jun

2019 ◽  
Author(s):  
Maxime Jay-Allemand ◽  
Pierre Javelle ◽  
Igor Gejadze ◽  
Patrick Arnaud ◽  
Pierre-Olivier Malaterre ◽  
...  

Abstract. Flash flood alerts in metropolitan France are provided by SCHAPI (Service Central Hydrométéorologique et d’Appui à la Prévision des Inondations) through the Vigicrues Flash service, which is designed to work in ungauged catchments. The AIGA method implemented in Vigicrues Flash is designed for flood forecasting on small- and medium-scale watersheds. It is based on a distributed hydrological model accounting for spatial variability of the rainfall and the catchment properties, based on the radar rainfall observation inputs. Calibration of distributed parameters describing these properties with high resolution is difficult, both technically (in terms of the estimation method), and because of the identifiability issues. Indeed, the number of parameters to be calibrated is much greater than the number of spatial locations where the discharge observations are usually available. However, the flood propagation is a dynamic process, so observations have also a temporal dimension. This must be larger enough to comprise a representative set of events. In order to fully benefit from using the AIGA method, we consider its hydrological model (GRD) in combination with the variational estimation (data assimilation) method. In this method, the optimal set of parameters is found by minimizing the objective function which includes the misfit between the observed and predicted values and some additional constraints. The minimization process requires the gradient of the cost function with respect to all control parameters, which is efficiently computed using the adjoint model. The variational estimation method is scalable, fast converging, and offers a convenient framework for introducing additional constraints relevant to hydrology. It can be used both for calibrating the parameters and estimating the initial state of the hydrological system for short range forecasting (in a manner used in weather forecasting). The study area is the Gardon d’Anduze watershed where four gauging stations are available. In numerical experiments, the benefits of using the distributed against the uniform calibration are analysed in terms of the model predictive performance. Distributed calibration shows encouraging results with better model prediction at gauged and ungauged locations.


2006 ◽  
Vol 7 (4) ◽  
pp. 660-677 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Dara Entekhabi ◽  
Rafael L. Bras ◽  
Valeriy Y. Ivanov ◽  
Matthew P. Van Horne ◽  
...  

Abstract The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.


2020 ◽  
Author(s):  
Marc Berenguer ◽  
Shinju Park ◽  
Daniel Sempere-Torres

<p>Radar rainfall estimates and nowcasts have been used in Catalonia (NE Spain) for real-time flash flood hazard nowcasting based on the basin-aggregated rainfall for several years. This approach has been further developed within the European Projects ERICHA (www.ericha.eu) and ANYWHERE (www.anywhere-h2020.eu), where it has been demonstrated to monitor flash floods in real time in several locations and at different spatial scales (from regional to Continental coverage).</p><p>The work summarizes the main results of the recent projects, analysing the performance of the flash flood nowcasting system. The results obtained on recent events  show the main advantages and some of the limitations of the system.</p>


2011 ◽  
Vol 15 (12) ◽  
pp. 3809-3827 ◽  
Author(s):  
A. Atencia ◽  
L. Mediero ◽  
M. C. Llasat ◽  
L. Garrote

Abstract. The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.


2010 ◽  
Vol 394 (1-2) ◽  
pp. 17-27 ◽  
Author(s):  
Ludovic Bouilloud ◽  
Guy Delrieu ◽  
Brice Boudevillain ◽  
Pierre-Emmanuel Kirstetter

Sign in / Sign up

Export Citation Format

Share Document