scholarly journals VARIABILITAS KLOROFIL-a PERIODE INDIAN OCEAN DIPOLE DI SELAT BALI BERDASARKAN ANALISIS EMPIRICAL ORTHOGONAL FUNCTION

Author(s):  
Abu Sambah
2017 ◽  
Vol 18 (4) ◽  
pp. 1546-1555
Author(s):  
ISKHAQ ISKANDAR ◽  
QURNIA WULAN SARI ◽  
DEDI SETIABUDIDAYA ◽  
INDRA YUSTIAN ◽  
BRUCE MONGER

Iskandar I, Sari QW, Setiabudidaya D, Yustian I, Monger B. 2017. The distribution and variability of chlorophyll-a bloom in the southeastern tropical Indian Ocean using Empirical Orthogonal Function analysis. Biodiversitas 18: 1546-1555. The Indian Ocean Dipole (IOD) events cause anomalously strong upwelling along the sourthen coast of Sumatra-Java leading to the bloom of chlorophylla. An empirical orthogonal function (EOF) analysis was applied to the time series of the satellite-observed chlorophyll-a, sea surface temperature (SST) and surface winds. Spatial eigen functions of the first EOF mode revealed the broad areas of coherent temporal variation in chlorophyll-a, SST and Ekman pumping, which was observed in the southeastern tropical Indian Ocean (SETIO) region. The corresponding time series of principal component of the first EOF mode revealed a robust seasonal variation and relativley weak inter-annual variation. The second EOF mode exhibited a distinct inter-annual variation with the high surface chlorophyll-a concentration was observed along the southern coast of Sumatra-Java. This high chlorophyll-a concentration is co-located with the low SST, the positive Ekman pumping, and the positive wind-induced mixing. An EOF analysis applied on the seasonal time series showed interesting patterns. The leading EOF mode during the peak IOD season from September to November (SON) showed the high concentration of chlorophyll-a was restricted to the southern coast of Java and was co-located with low SST region. The corresponding time series of principal component of the leading EOF mode showed a significant correlation with the Dipole Mode Index (DMI), however it had no correlation with the Ekman pumping. It could be concluded that the chlorophyll-a bloom during the peak phase of the IOD event was generated by the alongshore upwelling-favorable winds in the preceding season.


2017 ◽  
Vol 30 (10) ◽  
pp. 3513-3528 ◽  
Author(s):  
Jung-Eun Chu ◽  
Bin Wang ◽  
June-Yi Lee ◽  
Kyung-Ja Ha

Abstract This study develops an empirical orthogonal function (EOF)-based self-organizing map (SOM) (ESOM) analysis to identify the nonlinear characteristics of the boreal summer intraseasonal oscillation (BSISO), which involves interactions between the summer mean circulation and the convectively coupled equatorial waves, which make BSISO evolution more complex than the Madden–Julian oscillation. The method utilizes the first five principal components of the outgoing longwave radiation (OLR) and the zonal wind at 850 hPa (U850) and has the advantages of filtering out uncertainties from noise and being free from mathematical restrictions, such as orthogonality and linearity. The ESOM analysis enables the detection of BSISO over the Asian summer monsoon region with eight phases. The four most distinguishable phases represent 1) a pair of stationary patterns with a dipole between the eastern Indian Ocean and the Philippine Sea (phases 1 and 5) and 2) a pair of propagating patterns with a northwest–southeast-tilted rain belt structure (phases 3 and 7). Phases 1 and 5 show an alternating seesaw oscillation throughout the summer with a 30–60-day period, whereas phases 3 and 7 peak in mid-June and early June denoting the monsoon rainy season and premonsoon period of Asian summer monsoon. ESOM captures that phases 1 and 5 happen more frequently and last longer than phases 3 and 7, whereas multivariate EOF analysis fails to describe this nonlinear occurrence. Phases 3 and phase 7 display distinct asymmetries in convective activity over the eastern Indian Ocean related to the relatively slow-growing and fast-decaying convective activity. The relationship with large-scale SST forcing is also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Jonson Lumban-Gaol ◽  
Eko Siswanto ◽  
Kedarnath Mahapatra ◽  
Nyoman Metta Nyanakumara Natih ◽  
I Wayan Nurjaya ◽  
...  

Although researchers have investigated the impact of Indian Ocean Dipole (IOD) phases on human lives, only a few have examined such impacts on fisheries. In this study, we analyzed the influence of negative (positive) IOD phases on chlorophyll a (Chl-a) concentrations as an indicator of phytoplankton biomass and small pelagic fish production in the eastern Indian Ocean (EIO) off Java. We also conducted field surveys in the EIO off Palabuhanratu Bay at the peak (October) and the end (December) of the 2019 positive IOD phase. Our findings show that the Chl-a concentration had a strong and robust association with the 2016 (2019) negative (positive) IOD phases. The negative (positive) anomalous Chl-a concentration in the EIO off Java associated with the negative (positive) IOD phase induced strong downwelling (upwelling), leading to the preponderant decrease (increase) in small pelagic fish production in the EIO off Java.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Guojian Wang ◽  
Wenju Cai

Abstract The 2019/20 Australian black summer bushfires were particularly severe in many respects, including its early commencement, large spatial coverage, and large number of burning days, preceded by record dry and hot anomalies. Determining whether greenhouse warming has played a role is an important issue. Here, we examine known modes of tropical climate variability that contribute to droughts in Australia to provide a gauge. We find that a two-year consecutive concurrence of the 2018 and 2019 positive Indian Ocean Dipole and the 2018 and 2019 Central Pacific El Niño, with the former affecting Southeast Australia, and the latter influencing eastern and northeastern Australia, may explain many characteristics of the fires. Such consecutive events occurred only once in the observations since 1911. Using two generations of state-of-the-art climate models under historical and a business-as-usual emission scenario, we show that the frequency of such consecutive concurrences increases slightly, but rainfall anomalies during such events are stronger in the future climate, and there are drying trends across Australia. The impact of the stronger rainfall anomalies during such events under drying trends is likely to be exacerbated by greenhouse warming-induced rise in temperatures, making such events in the future even more extreme.


Sign in / Sign up

Export Citation Format

Share Document