On the Equimorphism Types of Linear Orderings

2007 ◽  
Vol 13 (1) ◽  
pp. 71-99 ◽  
Author(s):  
Antonio Montalbán

§1. Introduction. A linear ordering (also known astotal ordering) embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the definition of equimorphism invariants for linear orderings, which provide a better understanding of the shape of this structure in general.This study of linear orderings started by analyzing the proof-theoretic strength of a theorem due to Jullien [Jul69]. As is often the case in Reverse Mathematics, to solve this problem it was necessary to develop a deeper understanding of the objects involved. This led to a variety of results on the structure of linear orderings and the embeddability relation on them. These results can be divided into three groups.

2014 ◽  
Vol 13 (08) ◽  
pp. 1450070 ◽  
Author(s):  
David F. Anderson ◽  
John D. LaGrange

Let R be a reduced commutative ring with 1 ≠ 0. Then R is a partially ordered set under the Abian order defined by x ≤ y if and only if xy = x2. Let RE be the set of equivalence classes for the equivalence relation on R given by x ~ y if and only if ann R(x) = ann R(y). Then RE is a commutative Boolean monoid with multiplication [x][y] = [xy] and is thus partially ordered by [x] ≤ [y] if and only if [xy] = [x]. In this paper, we study R and RE as both monoids and partially ordered sets. We are particularly interested in when RE can be embedded in R as either a monoid or a partially ordered set.


2019 ◽  
pp. 154-167
Author(s):  
John Stillwell

This chapter aims to pick up some of the ideas dropped from this book and set them in a bigger picture of logic and computability theory. It begins with a sketch of constructive mathematics. Originally developed by a minority of mathematicians opposed to using actual infinities, constructive mathematics contributed some useful techniques for computable mathematics in systems such as RCA0. This is followed by discussions on the completeness of logic and the incompleteness of Peano arithmetic (PA) and related systems. These results reveal mathematics as an arena where theorems cannot always be proved outright, but in which all of their logical equivalents can be found. This creates the possibility of reverse mathematics, where one seeks equivalents that are suitable as axioms. Next, the chapter explains how computability theory helps to distinguish the equivalence classes of theorems, and finally makes a few speculative remarks on the ordering of the equivalence classes, and how this throws light on the concept of mathematical depth.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


2012 ◽  
Vol 26 (25) ◽  
pp. 1246006
Author(s):  
H. DIEZ-MACHÍO ◽  
J. CLOTET ◽  
M. I. GARCÍA-PLANAS ◽  
M. D. MAGRET ◽  
M. E. MONTORO

We present a geometric approach to the study of singular switched linear systems, defining a Lie group action on the differentiable manifold consisting of the matrices defining their subsystems with orbits coinciding with equivalence classes under an equivalence relation which preserves reachability and derive miniversal (orthogonal) deformations of the system. We relate this with some new results on reachability of such systems.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


1989 ◽  
Vol 41 (5) ◽  
pp. 830-854 ◽  
Author(s):  
B. Banaschewski ◽  
A. Pultr

A natural approach to topology which emphasizes its geometric essence independent of the notion of points is given by the concept of frame (for instance [4], [8]). We consider this a good formalization of the intuitive perception of a space as given by the “places” of non-trivial extent with appropriate geometric relations between them. Viewed from this position, points are artefacts determined by collections of places which may in some sense by considered as collapsing or contracting; the precise meaning of the latter as well as possible notions of equivalence being largely arbitrary, one may indeed have different notions of point on the same “space”. Of course, the well-known notion of a point as a homomorphism into 2 evidently fits into this pattern by the familiar correspondence between these and the completely prime filters. For frames equipped with a diameter as considered in this paper, we introduce a natural alternative, the Cauchy points. These are the obvious counterparts, for metric locales, of equivalence classes of Cauchy sequences familiar from the classical description of completion of metric spaces: indeed they are decreasing sequences for which the diameters tend to zero, identified by a natural equivalence relation.


1963 ◽  
Vol 6 (2) ◽  
pp. 239-255
Author(s):  
Stanton M. Trott

The model of the real numbers described below was suggested by the fact that each irrational number ρ determines a linear ordering of J2, the additive group of ordered pairs of integers. To obtain the ordering, we define (m, n) ≤ (m', n') to mean that (m'- m)ρ ≤ n' - n. This order is invariant with group translations, and hence is called a "group linear ordering". It is completely determined by the set of its "positive" elements, in this case, by the set of integer pairs (m, n) such that (0, 0) ≤ (m, n), or, equivalently, mρ < n. The law of trichotomy for linear orderings dictates that only the zero of an ordered group can be both positive and negative.


2005 ◽  
Vol 11 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Stephen G. Simpson

AbstractA mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We focus on the countable distributive lattices ω and s of weak and strong degrees of mass problems given by nonempty subsets of 2ω. Using an abstract Gödel/Rosser incompleteness property, we characterize the subsets of 2ω whose associated mass problems are of top degree in ω and s, respectively Let R be the set of Turing oracles which are random in the sense of Martin-Löf, and let r be the weak degree of R. We show that r is a natural intermediate degree within ω. Namely, we characterize r as the unique largest weak degree of a subset of 2ω of positive measure. Within ω we show that r is meet irreducible, does not join to 1, and is incomparable with all weak degrees of nonempty thin perfect subsets of 2ω. In addition, we present other natural examples of intermediate degrees in ω. We relate these examples to reverse mathematics, computational complexity, and Gentzen-style proof theory.


1958 ◽  
Vol 13 ◽  
pp. 135-156 ◽  
Author(s):  
Masahisa Adachi

In the papers [11] and [18] Rohlin and Thom have introduced an equivalence relation into the set of compact orientable (not necessarily connected) differentiable manifolds, which, roughly speaking, is described in the following manner: two differentiable manifolds are equivalent (cobordantes), when they together form the boundary of a bounded differentiable manifold. The equivalence classes can be added and multiplied in a natural way and form a graded algebra Ω relative to the addition, the multiplication and the dimension of manifolds. The precise structures of the groups of cobordism Ωk of dimension k are not known thoroughly. Thom [18] has determined the free part of Ω and also calculated explicitly Ωk for 0 ≦ k ≦ 7.


1983 ◽  
Vol 35 (2) ◽  
pp. 353-372 ◽  
Author(s):  
Panaiotis K. Pavlakos

M. Sion and T. Traynor investigated ([15]-[17]), measures and integrals having values in topological groups or semigroups. Their definition of integrability was a modification of Phillips-Rickart bilinear vector integrals, in locally convex topological vector spaces.The purpose of this paper is to develop a good notion of an integration process in partially ordered groups, based on their order structure. The results obtained generalize some of the results of J. D. M. Wright ([19]-[22]) where the measurable functions are real-valued and the measures take values in partially ordered vector spaces.Let if be a σ-algebra of subsets of T, X a lattice group, Y, Z partially ordered groups and m : H → F a F-valued measure on H. By F(T, X), M(T, X), E(T, X) and S(T, X) are denoted the lattice group of functions with domain T and with range X, the lattice group of (H, m)-measurable functions of F(T, X) and the lattice group of (H, m)-elementary measurable functions of F(T, X) and the lattice group of (H, m)-simple measurable functions of F(T, X) respectively.


Sign in / Sign up

Export Citation Format

Share Document