A structure theorem for strongly abelian varieties with few models

1991 ◽  
Vol 56 (3) ◽  
pp. 832-852 ◽  
Author(s):  
Bradd Hart ◽  
Matthew Valeriote

By a variety, we mean a class of structures in some language containing only function symbols which is equationally defined or equivalently is closed under homomorphisms, submodels and products.If K is a class of -structures then I(K, λ) denotes the number of nonisomorphic models in K of cardinality λ. When we say that K has few models, we mean that I(K,λ) < 2λ for some λ > ∣∣. If I(K,λ) = 2λ for all λ > ∣∣, then we say K has many models. In [9] and [10], Shelah has shown that for an elementary class K, having few models is a strong structural condition.Before we give the definition of strongly abelian, let us motivate how it arises in this context. A variety is locally finite if every finitely generated algebra in is finite. If and are subvarieties of then = ⊗ means that is the variety generated by and and moreover there is a term τ(x, y) so that τ(x, y) = x holds in and τ(x, y) = y holds in . is called the varietal product of and . As a consequence, if = ⊗ then for every M ∈ there is a unique (up to isomorphism) A ∈ and B ∈ so that M ≅ A × B.In [4], McKenzie and Valeriote proved the following theorem.Theorem 0.1. Ifis a locally finite decidable variety, then there are three subvarieties of, , and, so that = ⊗ ⊗ andis an affine variety, is a strongly abelian variety andis a discriminator variety.For the exact definitions of the terms affine and discriminator one can see [4]; however, for us here it is important to know that an affine variety is polynomially equivalent to a variety of left R-modules over some ring R and that any nontrivial discriminator variety contains an algebra whose complete theory is unstable.

1985 ◽  
Vol 50 (3) ◽  
pp. 604-610
Author(s):  
Francoise Point

The starting point of this work was Saracino and Wood's description of the finitely generic abelian ordered groups [S-W].We generalize the result of Saracino and Wood to a class ∑UH of subdirect products of substructures of elements of a class ∑, which has some relationships with the discriminator variety V(∑t) generated by ∑. More precisely, let ∑ be an elementary class of L-algebras with theory T. Burris and Werner have shown that if ∑ has a model companion then the existentially closed models in the discriminator variety V(∑t) form an elementary class which they have axiomatized. In general it is not the case that the existentially closed elements of ∑UH form an elementary class. For instance, take for ∑ the class ∑0 of linearly ordered abelian groups (see [G-P]).We determine the finitely generic elements of ∑UH via the three following conditions on T:(1) There is an open L-formula which says in any element of ∑UH that the complement of equalizers do not overlap.(2) There is an existentially closed element of ∑UH which is an L-reduct of an element of V(∑t) and whose L-extensions respect the relationships between the complements of the equalizers.(3) For any models A, B of T, there exists a model C of TUH such that A and B embed in C.(Condition (3) is weaker then “T has the joint embedding property”. It is satisfied for example if every model of T has a one-element substructure. Condition (3) implies that ∑UH has the joint embedding property and therefore that the class of finitely generic elements of ∑UH is complete.)


2019 ◽  
Vol 2019 (749) ◽  
pp. 65-86
Author(s):  
Pete L. Clark ◽  
Allan Lacy

Abstract We show that a nontrivial abelian variety over a Hilbertian field in which the weak Mordell–Weil theorem holds admits infinitely many torsors with period any given n>1 that is not divisible by the characteristic. The corresponding statement with “period” replaced by “index” is plausible but open, and it seems much more challenging. We show that for every infinite, finitely generated field K, there is an elliptic curve E_{/K} which admits infinitely many torsors with index any given n>1 .


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


1976 ◽  
Vol 28 (5) ◽  
pp. 1105-1120 ◽  
Author(s):  
W. K. Nicholson

Mares [9] has called a projective module semiperfect if every homomorphic image has a projective cover and has shown that many of the properties of semiperfect rings can be extended to these modules. More recently Zelmanowitz [16] has called a module regular if every finitely generated submodule is a projective direct summand. In the present paper a class of semiregular modules is introduced which contains all regular and all semiperfect modules. Several characterizations of these modules are given and a structure theorem is proved. In addition several theorems about regular and semiperfect modules are extended.


Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.


10.29007/39jj ◽  
2018 ◽  
Author(s):  
Peter Wegner ◽  
Eugene Eberbach ◽  
Mark Burgin

In the paper we prove in a new and simple way that Interactionmachines are more powerful than Turing machines. To do thatwe extend the definition of Interaction machines to multiple interactivecomponents, where each component may perform simple computation.The emerging expressiveness is due to the power of interaction and allowsto accept languages not accepted by Turing machines. The mainresult that Interaction machines can accept arbitrary languages over agiven alphabet sheds a new light to the power of interaction. Despite ofthat we do not claim that Interaction machines are complete. We claimthat a complete theory of computer science cannot exist and especially,Turing machines or Interaction machines cannot be a complete model ofcomputation. However complete models of computation may and shouldbe approximated indefinitely and our contribution presents one of suchattempts.


10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Author(s):  
Günter Harder

This chapter shows that certain classes of Harish-Chandra modules have in a natural way a structure over ℤ. The Lie group is replaced by a split reductive group scheme G/ℤ, its Lie algebra is denoted by 𝖌ℤ. On the group scheme G/ℤ there is a Cartan involution 𝚯 that acts by t ↦ t −1 on the split maximal torus. The fixed points of G/ℤ under 𝚯 is a flat group scheme 𝒦/ℤ. A Harish-Chandra module over ℤ is a ℤ-module 𝒱 that comes with an action of the Lie algebra 𝖌ℤ, an action of the group scheme 𝒦, and some compatibility conditions is required between these two actions. Finally, 𝒦-finiteness is also required, which is that 𝒱 is a union of finitely generated ℤ modules 𝒱I that are 𝒦-invariant. The definitions imitate the definition of a Harish-Chandra modules over ℝ or over ℂ.


Sign in / Sign up

Export Citation Format

Share Document