Changes in equilibrium line altitude of glacier systems in Northeastern Siberia for the late 20th–early 21st centuries.

2018 ◽  
Vol XXII (6) ◽  
2019 ◽  
Author(s):  
Álvaro González-Reyes ◽  
Claudio Bravo ◽  
Mathias Vuille ◽  
Martin Jacques-Coper ◽  
Maisa Rojas ◽  
...  

Abstract. The "Little Ice Age" (LIA; 1500–1850 Common Era (CE)), has long been recognized as the last period when mountain glaciers in many regions of the Northern Hemisphere (NH) recorded extensive growth intervals in terms of their ice mass and frontal position. The knowledge about this relevant paleoclimatic interval is vast in mountainous regions such as the Alps and Rocky Mountains in North America. However, in extra-tropical Andean sub-regions such as the Mediterranean Andes of Chile and Argentina (MA; 30º–37º S), the LIA has been poorly documented. Paradoxically, the few climate reconstructions performed in the MA based on lake sediments and tree rings do not show clear evidence of a LIA climate anomaly as observed in the NH. In addition, recent studies have demonstrated temporal differences between mean air temperature variations across the last millennium between both hemispheres. This motivates our hypothesis that the LIA period was not associated with a significant climate perturbation in the MA region. Considering this background, we performed an experiment using daily climatic variables from three Global Climate Models (GCMs) to force a novel glaciological model. In this way, we simulated temporal variations of the glacier equilibrium-line altitude (ELA) to evaluate the glacier response during the period 1500–1848 CE. Overall, each GCM shows temporal changes in annual ELA, with anomalously low elevations during 1640–1670 and 1800–1848 CE. An interval with high ELA values was identified during 1550–1575 CE. The spectral properties of the mean annual ELA in each GCM present significant periodicities between 2–7 years, and also significant decadal to multi-decadal signals. In addition, significant and coherent cycles at interannual to multi-decadal scales were detected between modeled mean annual ELAs and the first EOF1 extracted from Sea Surface Temperature (SST) within the El Niño 3.4 of each GCM. Finally, significant Pearson correlation coefficients were obtained between the mean annual ELA and Pacific SST on interannual to multi-decadal timescales. According to our findings, we propose that Pacific SST variability was the main modulator of temporal changes of the ELA in the MA region of South America during 1500–1848 CE.


1972 ◽  
Vol 11 (61) ◽  
pp. 73-79 ◽  
Author(s):  
R. E. Dugdale

AbstractData from Norwegian glaciers and statistical tests are presented which suggest that vertical net-budget gradient, ablation gradient and equilibrium-line altitude can be taken as characteristic for any particular glacier. The usefulness of these conceptual models as predictive techniques for the regional determination of glacier net budget when only a small sample is available, and in palaeo-net-budget studies, is shown to be limited.


1981 ◽  
Vol 27 (96) ◽  
pp. 271-282 ◽  
Author(s):  
David P. Dethier ◽  
Jan E. Frederick

AbstractDuring 1974–75 glaciologic and geologic studies were conducted on a small (0.17 km2) avalanche-nourished glacier in the North Cascade Range of Washington. The approximate equilibrium-line altitude (ELA) for this ice body, informally called “Vesper” glacier, lies at 1475 m, some 300 m below the regional ELA value. Estimated annual accumulation was 6 100±675 mm during the two years of study; 15 to 30% of this flux resulted from avalanche and wind–transported snow. Average annual ablation during the period was 5 350 mm, giving a total net balance of + 1 600 mm for the two-year study period. “Vesper” glacier persists well below the regional snow-line because of excessive local precipitation, substantial avalanche contributions, and a favourable north-facing aspect.Neoglacial moraines indicate that maximum ELA lowering in this period was approximately 165 m and occurred prior to a.d. 1670. Minor re-advances occurred during the nineteenth century. These reconnaissance measurements are consistent with the sparse geologic data reported from other glaciers in the Cascade Range. While the relationship between regional lowering of snow-line and avalanche activity is uncertain at present, these data suggest that avalanche-nourished glaciers provide a useful record of climatic fluctuations.


2019 ◽  
Vol 11 (20) ◽  
pp. 2378 ◽  
Author(s):  
Mauri Pelto

The Juneau Icefield Research Program (JIRP) has been examining the glaciers of the Juneau Icefield since 1946. The height of the transient snowline (TSL) at the end of the summer represents the annual equilibrium line altitude (ELA) for the glacier, where ablation equals accumulation. On Taku Glacier the ELA has been observed annually from 1946 to 2018. Since 1998 multiple annual observations of the TSL in satellite imagery identify both the migration rate of the TSL and ELA. The mean ELA has risen 85 ± 10 m from the 1946–1985 period to the 1986–2018 period. In 2018 the TSL was observed at: 900 m on 5 July; 975 m on 21 July; 1075 m on 30 July; 1400 m on 16 September; and 1425 m on 1 October. This is the first time since 1946 that the TSL has reached or exceeded 1250 m on Taku Glacier. The 500 m TSL rise from 5 July to 30 July, 8.0. md−1, is the fastest rate of rise observed. This combined with the observed balance gradient in this region yields an ablation rate of 40–43 mmd−1, nearly double the average ablation rate. On 22 July a snow pit was completed at 1405 m with 0.93 m w.e. (water equivalent), that subsequently lost all snow cover, prior to 16 September. This is one of eight snow pits completed in July providing field data to verify the ablation rate. The result of the record ELA and rapid ablation is the largest negative annual balance of Taku Glacier since records began in 1946.


1986 ◽  
Vol 32 (111) ◽  
pp. 208-218
Author(s):  
Robert J. Rogerson

AbstractThe net mass balance of four small cirque glaciers (0.7–1.4 km2) in the Torngat Mountains of northern Labrador was measured for 1981–84, allowing three complete mass-balance years to be calculated. The two largest glaciers experienced positive mass-balance conditions in 1982 while all the glaciers were negative in 1983. The temporal pattern relates directly to general climatic conditions, in particular winter snowfall. Spatial variations of mass balance on the glaciers are the result of several factors including altitude, extent of supraglacial debris cover, slope, proximity to side and backwalls of the enclosing cirque, and the height of the backwall above the ice surface. Abraham Glacier, the smallest studied and with consistently the largest negative mass balance (–1.28 m in 1983), re-advanced an average of 1.2 m each year between 1981 and 1984. Mean equilibrium-line altitude (ELA) for the four glaciers is 1050 m, varying substantially from one glacier to another (+240 to –140 m) and from year to year (+60 to –30 m).


1998 ◽  
Vol 44 (147) ◽  
pp. 383-393 ◽  
Author(s):  
Jakob Wallinga ◽  
Roderik S.W. Van De Wal

AbstractA one-dimensional time-dependent flowline model of Rhonegletscher, Switzerland, has been used to test the glacier’s response to climatic warming. Mass-balance variations over the last 100 years are obtained from observations of the equilibrium-line altitude (ELA) and a reconstruction of the ELA based on a statistical correlation between temperature and ELA. For the period prior to AD 1882, for which no reliable climate data exist, we chose equilibrium-line altitudes that enabled us to simulate accurately the glacier length from AD 1602.The model simulates the historical glacier length almost perfectly and glacier geometry very well. It underestimates glacier-surface velocities by 1-18%. Following these reference experiments, we investigated the response of Rhonegletscher to a number of climate-change scenarios for the period AD 1990-2100. For a constant climate equal to the 1961-90 mean, the model predicts a 6% decrease in glacier volume by AD 2100. Rhonegletscher will retreat by almost 1 km over the next 100 years at this scenario. At a warming rate of 0.04 K a-1, only 4% of the glacier volume will be left by AD 2100.


Sign in / Sign up

Export Citation Format

Share Document