scholarly journals FREE LONGITUDINAL VIBRATIONS OF A VERTICAL ROD WITH DISCRETE MASSES WITH DAMPING FORCES

Author(s):  
H. P. Kulterbaev ◽  
I. M. Abdul-Salam ◽  
M. M. Payzulaev

Objectives. The longitudinal oscillations of a vertical rod of a continually discrete system with kinematic seismic disturbances in the form of a stationary random process are considered.Method. A method for determining the variance of the output process of displacements, using the representation of the input random process as a sum of harmonic deterministic perturbations, is proposed and implemented.Result. The dependence function of the dispersion of displacements on the longitudinal coordinate is determined. Longitudinal vibrations of vertical rods near the epicenter of earthquakes are dangerous for their strength and stability. The methods of finite differences and coordinate descent allow you to create universal algorithms and computer programs that easily solve complex spectral problems.Conclusion. To date, research on random vibrations of buildings and structures, as well as regulatory documents, has been devoted to horizontal seismic effects and transverse bending vibrations caused by them. Examples indicate the need to expand the scope of research with the inclusion of other types of vibrations: combinations of longitudinal with transverse, angular, torsional, parametric, etc. This design can be easily adapted to vibrations of rods of variable cross section, to vibrations of continually discrete rods.

2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


2018 ◽  
Vol 38 (2) ◽  
pp. 774-786 ◽  
Author(s):  
Joanna Iwaniec ◽  
Marek Iwaniec ◽  
Stanisław Kasprzyk

The research concerns analysis of transverse vibrations of power line transmission tower of variable cross section (changing on its length). Such constructions are subjected simultaneously to internal and external loads, which results in transverse and longitudinal vibrations. These vibrations are described by two partial differential equations of distributed parameters depending on two independent variables. If vibrations are small, the terms connecting equations of transverse and longitudinal vibrations can be neglected as infinitely small with respect to other quantities. Consequently, each vibration can be considered separately.


The paper consists of an introduction and three sections. The introduction discusses the relevance of issues related to the study of inhomogeneous beams vibrations. The analysis of publications and the results obtained in this area is performed. The first section is devoted to the formulation of the boundary-value problem of finding natural-vibration frequencies for an inhomogeneous beam under the Euler-Bernoulli hypotheses. By introducing new variables, the problem originally formulated in displacements reduces to an identical one, but formulated in terms of bending moment. The next section describes the method of integro-differential relations, which is an alternative to the classical variational approaches. Further, the possibilities of constructing various bilateral energy estimates of the quality of approximate solutions arising from the method of integro-differential relations are investigated. In the third section, using the example of free vibrations of a supported concrete beam, numerical aspects of constructing an approximate solution for boundary problems described by an ordinary differential equation with variable coefficients are studied. The proposed bilateral quality criteria of the approximate solution make it possible to obtain high-precision solutions for mathematical models of small dimension.


Author(s):  
Елена Петровна Белоусова

Для многих видов медицинских вмешательств требуется применение ультразвуковых инструментов с различными характеристиками. Используются инструменты, совершающие продольные колебания, значительно реже - инструменты с изгибами и крутильными колебаниями, либо достаточно длинные ультразвуковые медицинские инструменты, либо короткие, но тонкие. В таких инструментах часто наблюдается так называемая динамическая потеря устойчивости, когда прямолинейный инструмент, совершающий продольные колебания, внезапно начинает совершать изгибные колебания, амплитуда которых бывает настолько высока, что приводит к разрушению инструмента. Такое явление также называют параметрическим резонансом ультразвуковых инструментов. Цель статьи - анализ условий и параметров, позволяющих минимизировать травматичность применения ультразвуковых медицинских инструментов, исследование в динамике устойчивости ультразвуковых низкочастотных медицинских инструментов. Для определения оптимального набора параметров динамической устойчивости изгибных колебаний ультразвуковых низкочастотных медицинских инструментов используется уравнение Матье-Хилла. В этом аспекте решение задачи сводится к определению: 1) границ областей неустойчивости уравнения Матье; 2) границ областей неустойчивости при разных значениях коэффициента возбуждения; 3) границ областей неустойчивости с применением метода малого параметра. Для исследования динамической устойчивости уравнения колебаний прямолинейного стержня переменного сечения достаточно выполнить расчет коэффициентов уравнения Матье и использовать диаграмму Айнса-Стретта для нахождения точек попадания в область устойчивости. Результаты расчетов показали, что инструменты, изготовленные из титана, обладают высокой динамической устойчивостью, что практически исключает вероятность их разрушения при проведении медицинских операций. Полученные характеристики медицинских инструментов указывают на эффективность их применения в медицинской практике Many types of medical interventions require the use of ultrasound instruments with different characteristics. Instruments that perform longitudinal vibrations are used, much less often-instruments with bends and torsional vibrations, or rather long ultrasound medical instruments, or short, but thin. In such instruments, the so-called dynamic loss of stability is often observed, when a straight-line tool that performs longitudinal vibrations suddenly begins to make bending vibrations, the amplitude of which is so high that it leads to the destruction of the tool. This phenomenon is also called parametric resonance of ultrasonic instruments. The purpose of the article is to analyze the conditions and parameters that allow minimizing the traumaticity of the use of ultrasonic medical instruments, to study the dynamics of the stability of ultrasonic low-frequency medical instruments. The Mathieu-Hill equation is used to determine the optimal set of parameters for the dynamic stability of bending vibrations of ultrasonic low-frequency medical instruments. In this aspect, the solution of the problem is reduced to the definition of: 1) the boundaries of the instability regions of the Mathieu equation; 2) the boundaries of the instability regions at different values of the excitation coefficient; 3) the boundaries of the instability regions using the small parameter method. To study the dynamic stability of the equation of oscillations of a rectilinear rod of variable cross-section, it is sufficient to calculate the coefficients of the Mathieu equation and use the Ains-Strett diagram to find the points of falling into the stability region. The results of the calculations showed that the instruments made of titanium have a high dynamic stability, which practically eliminates the possibility of their destruction during medical operations. The obtained characteristics of medical instruments indicate the effectiveness of their use in medical practice


1947 ◽  
Vol 14 (1) ◽  
pp. A1-A6
Author(s):  
A. I. Bellin

Abstract This paper presents a method for determining the natural frequencies of lateral vibrations for elastic beams. The beams may be of variable cross section and may have any number of spans. The five-moment equation is developed and is then applied to beams supported in various ways. The author reduces the necessary calculations to a simple tabular scheme. Several illustrative examples are included to demonstrate the method of computation.


Sign in / Sign up

Export Citation Format

Share Document