scholarly journals 3D finite element modeling of edge and width drop behavior in hot rolling mill

2017 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Nick Van Bossche ◽  
T. Bogaerts ◽  
Inge Bellemans ◽  
Kim Verbeken ◽  
Wim De Waele

Hot rough rolling is a conventional forming process in modern steelmaking practice in which high deformations are applied to a steel slab at high temperatures. Due to the sequence of edge rolling followed by rough rolling, so-called edge and width drop phenomena are observed at the head and tail of the slab. These unwanted effects govern a yield loss and need to be minimized as much as possible. By means of a finite element study this research aims to discover the main influencing parameters on the observed edge and width drop behavior. An overview and comparison of the relative contributions of several edge rolling settings are presented. The net edger roll opening is the most important influencing parameter on edge and width drop behavior. The effect of width and thickness of the slab on the edge drop is less strongly pronounced; only the thickness influences the width drop behavior.

2012 ◽  
Vol 452-453 ◽  
pp. 1257-1261 ◽  
Author(s):  
Jian Guo Cao ◽  
Yan Lin Wang ◽  
Hong Bo Li ◽  
Mu Qing Song ◽  
Sheng Hui Jia ◽  
...  

Edge drop is an important quality evaluating index for strip cross-section with the increasing of requirement for higher gauge accuracy to meet customer's demand. The mathematical model of roll shifting system plays an important role in controlling the edge drop on modern tandem cold rolling mills. Based on the explicit dynamic finite element method, a 3D finite element simulation model of rolls and strip is established for a large ultra-wide 6-high cold rolling mill with the developed EDW (edge drop control work roll) and the matched CVC intermediate roll to investigate the effect of work roll shift on edge drop of strip. Considering on the characteristics of EDW work rolls, equivalent area compensated method has been put forward to build the shifting model for edge drop control. The results indicated that the values of edge drop are less than 7μm by using the proper shifting model and the shifting model can be used to guide the practical production.


2014 ◽  
Vol 626 ◽  
pp. 570-575 ◽  
Author(s):  
Jong Ning Aoh ◽  
Han Kai Hsu ◽  
Wei Ting Dai ◽  
Chun Yen Lin ◽  
Yen Liang Yeh

In the hot rolling process, the steel slab may experience a temperature gradient along its transverse direction which may cause camber and wedge after rolling. Camber and wedge phenomenon will affect the quality of the steel plate. To eliminate camber and wedge phenomenon, a pair of side guides is placed before and behind the hot rolling mill. The position mode and the force mode are the control modes for side guides to correct the slab shape and to guide the slab to follow rolling direction. Finite element analysis using ABAQUS was applied to simulate hot rolling process to find the correction mechanism of rolling equipment. The centerline of slab was traced and the shape of slab was predicted. The difference of rolling load between work side and drive side of roller was determined. Furthermore, the load, stress and velocity distribution on the slab at roll bite were analyzed. By using numerical model, hot rolling parameters including side guide control strategy can be predicted, which can provide the hot rolling line as a guideline to improve the quality of the steel slab.


Author(s):  
E. N. Shiryaeva ◽  
M. A. Polyakov ◽  
D. V. Terent'ev

Complexity of modern metallurgical plants, presence of great number of horizontal and vertical interactions between their various structural subdivisions makes it necessary to apply a systems analysis to elaborate effective measures for stable development of a plant operation. Among such measures, digitalization of a plant is widespread at present. To implement the digitalization it is necessary to have clear vision about links at all the levels of the technological system of a plant. A terminology quoted, accepted in the existing regulatory documents for defining of conceptions, comprising the technological system. It was shown, that the following four hierarchical levels of technological systems are distinguished: technological systems of operations, technological systems of processes, technological systems of production subdivisions and technological systems of plants. A hierarchical scheme of technological systems of hot-rolled sheet production at an integrated steel plant presented. Existing horizontal and vertical links between the basic plant’s shops shown. Peculiarities of flows of material, energy and information at the operation “rolling” of the technological system “hot rolling of a steel sheet” considered. As a technical system of the technological process of the hot rolling, the hot rolling mill was chosen. A structural diagram of the hot rolling mill was elaborated, the mill being consisted of reheating furnaces, roughing and finishing stand groups, with an intermediate roll-table between them, and down-coilers section. Since the rolling stands are the basic structural elements of the hot rolling mill, structural diagrams of a roughing and a finishing stands were elaborated. Results of the systems analysis of the technological and technical systems, hierarchically linked in the process of steel sheet hot rolling, can be applied for perfection of organization structure of the whole plant, as well as for elaboration mathematical models of a system separate elements functioning, which is a necessary condition for a plant digitalization.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 503
Author(s):  
Yuheng Zhang ◽  
Zhiqing Hu ◽  
Liming Guo

In order to study a new thread rolling forming process from a microscopic perspective, a polycrystalline model was established, based on the crystal plasticity finite element method (CPFEM) and Voronoi polyhedron theory. The fluidity of metals was studied to explain the reason for the concave center. The simulation results show that the strain curve of the representative element can more truly reflect the deformation behavior of the material. The grain orientations after deformation are distributed near the initial orientation. The evolution of each slip system is determined by the initial grain orientations and grain locations. The pole figures obtained from the experiment show high consistency with the pole figures obtained by simulation, which verifies the accuracy of the texture prediction by CPFEM. The experimental results show that thread rolling is more uniform in deformation than ordinary rolling.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 869
Author(s):  
Rongrong Peng ◽  
Xingzhong Zhang ◽  
Peiming Shi

Based on the analysis of the influence of roll vibration on the elastoplastic deformation state of a workpiece in a rolling process, a dynamic rolling force model with the hysteresis effect is established. Taking the rolling parameters of a 1780 mm hot rolling mill as an example, we analyzed the hysteresis between the dynamic rolling force and the roll vibration displacement by varying the rolling speed, roll radius, entry thickness, front tension, back tension, and strip width. Under the effect of the dynamic rolling force and considering the nonlinear effect between the backup and work rolls as well as the structural constraints on the rolling mill, a hysteretic nonlinear vertical vibration model of a four-high hot rolling mill was established. The amplitude-frequency equations corresponding to 1/2 subharmonic resonance and 1:1 internal resonance of the rolling mill rolls were obtained using a multi-scale approximation method. The amplitude-frequency characteristics of the rolling mill vibration system with different parameters were studied through a numerical simulation. The parametric stiffness and nonlinear stiffness corresponding to the dynamic rolling force were found to have a significant influence on the amplitude of the subharmonic resonance system, the bending degree of the vibration curve, and the size of the resonance region. Moreover, with the change in the parametric stiffness, the internal resonance exhibited an evident jump phenomenon. Finally, the chaotic characteristics of the rolling mill vibration system were studied, and the dynamic behavior of the vibration system was analyzed and verified using a bifurcation diagram, maximum Lyapunov exponent, phase trajectory, and Poincare section. Our research provides a theoretical reference for eliminating and suppressing the chatter in rolling mills subjected to an elastoplastic hysteresis deformation.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


Sign in / Sign up

Export Citation Format

Share Document