scholarly journals Гетероструктура 2D SiC/Si: электронные состояния и адсорбционная способность

Author(s):  
С.Ю. Давыдов ◽  
А.В. Зубов

Abstract A model of a heterostructure consisting of a silicon-carbide single layer formed on a massive silicon substrate is proposed. The problem of the adsorption of alkali metal atoms and halogen atoms on the carbon and silicon surface atoms of a 2D SiC/Si heterostructure is considered. Analytical estimates for charge transfer and the adsorption energy are reported.

2016 ◽  
Vol 109 (8) ◽  
pp. 081603 ◽  
Author(s):  
H.-C. Shin ◽  
S. J. Ahn ◽  
H. W. Kim ◽  
Y. Moon ◽  
K. B. Rai ◽  
...  

2021 ◽  
pp. 27-34
Author(s):  
Irina Zaporotskova ◽  
◽  
Evgeniy Dryuchkov ◽  
Maria Chesheva ◽  
Daria Zvonareva ◽  
...  

The problem of modification of boron-carbon nanotubes (BCNT) by functional groups is relevant in connection with the intensive development of the nano industry, in particular, nano- and microelectronics. For example, a modified nanotube can be used as an element of a sensor device for detecting microenvironments of various substances, in particular metals included in salts and alkalis. The paper discusses the possibility of creating a high-performance sensor using single-layer boron-carbon nanotubes as a sensitive element, the surface of which is modified with a functional nitro group -NO2. Quantum-chemical studies of the process of attaching a nitro group to the outer surface of a single-layer boron-carbon nanotube (BCNT) of type (6, 6) were carried out, which proved the possibility of modifying the BCNT and the formation of a bond between the group -NO2 and the carbon atom of the surface of the nanotube. The results of computer simulation of interaction of surface-modified boron-carbon nanotube with alkali metal atoms (lithium, sodium, potassium) are presented. The sensory interaction of the modified boron-carbon nanosystem with the selected metal atoms was investigated, which proved the possibility of identifying these atoms using a nanotubular system that can act as an element of the sensor device. When reacting with alkali metal atoms in the “BСNT+NO 2” complex, the number of basic carriers increases, due to the transfer of electron density from metal atoms to modified BСNT. The results presented in this paper were obtained using the molecular cluster model and the calculated DFT method with exchange-correlation functionality B3LYP (valence-split basis set 6-31G).


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2003 ◽  
Vol 547 (1-2) ◽  
pp. L859-L864 ◽  
Author(s):  
R Lindsay ◽  
E Michelangeli ◽  
B.G Daniels ◽  
M Polcik ◽  
A Verdini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document