scholarly journals Огромное магнетосопротивление в структуре металл--органический полупроводник--металл

Author(s):  
А.А. Лачинов ◽  
Д.Д. Карамов ◽  
А.Н. Лачинов

The article represents results of huge magnetoresistance effect investigation in the structure of magnetic metal / organic semiconductor / nonmagnetic metal with magnitude of ~ 2600%. There are observed influence of magnetic field on concentration and mobility of charge carriers and on magnitude of ferromagnetic/semiconductor potential barrier. Theoretical interpretation is considered with previously discussed model. The model describes influence of hyperfine fields on spin selective hopping rate between the sites in the polymer

2007 ◽  
Vol 999 ◽  
Author(s):  
Michael G. Foygel ◽  
James Niggemann ◽  
A. G. Petukhov

AbstractWe studied electrical transport in dilute magnetic semiconductors, which is determined by scattering of free carriers by localized magnetic moments. In our calculations of the scattering time and the mobility of the majority and minority-spin carriers we took into account both the effects of thermal spin fluctuations and of built-in spatial disorder of the magnetic atoms. These effects are responsible for the magnetic-field dependence of the mobility of the charge carriers. The application of the external magnetic field suppresses the thermodynamic spin fluctuations thus increasing the mobility. Simultaneously, depending on the type of the carriers and on parameters of the impurity potential, scattering by built-in spatial fluctuations of the atomic spins increases or decreases with the magnetic field. The latter effect is due to the change in the magnitude of the random local Zeeman splitting with the magnetic field. We discuss the role of the above effects on mobility and magnetoresistance of semiconductors where magnetic impurities are electrically active or neutral.


2020 ◽  
Vol 21 (11) ◽  
pp. 1016-1027 ◽  
Author(s):  
Fatemeh Emadi ◽  
Arash Emadi ◽  
Ahmad Gholami

Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.


2021 ◽  
Author(s):  
Faezeh Taghavi ◽  
Amir Khojastehnezhad ◽  
Reza Khalifeh ◽  
Maryam Rajabzadeh ◽  
Fahimeh Rezaei ◽  
...  

The first report of the use of an acidic magnetic metal organic framework for the chemical fixation of CO2 as an environmentally friendly reaction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1759
Author(s):  
Neda Motamedi ◽  
Mahmood Barani ◽  
Azadeh Lohrasbi-Nejad ◽  
Mojtaba Mortazavi ◽  
Ali Riahi-Medvar ◽  
...  

The improvement in the enzyme activity of Aspergillus flavus urate oxidase (Uox) was attained by immobilizing it on the surface of a Ni-based magnetic metal–organic framework (NimMOF) nanomaterial; physicochemical properties of NimMOF and its application as an enzyme stabilizing support were evaluated, which revealed a significant improvement in its stability upon immobilization on NimMOF (Uox@NimMOF). It was affirmed that while the free Uox enzyme lost almost all of its activity at ~40–45 °C, the immobilized Uox@NimMOF retained around 60% of its original activity, even retaining significant activity at 70 °C. The activation energy (Ea) of the enzyme was calculated to be ~58.81 kJ mol−1 after stabilization, which is approximately half of the naked Uox enzyme. Furthermore, the external spectroscopy showed that the MOF nanomaterials can be coated by hydrophobic areas of the Uox enzyme, and the immobilized enzyme was active over a broad range of pH and temperatures, which bodes well for the thermal and long-term stability of the immobilized Uox on NimMOF.


2021 ◽  
pp. 1-30
Author(s):  
Homeira Nasiri ◽  
Farshad Yazdani ◽  
Jalal Zeinali ◽  
Hamid Reza Mortaheb

2005 ◽  
Vol 243 (2) ◽  
pp. 382-386 ◽  
Author(s):  
P. Prins ◽  
F. C. Grozema ◽  
J. M. Schins ◽  
L. D. A. Siebbeles

Sign in / Sign up

Export Citation Format

Share Document