scholarly journals Скачкообразные процессы магнитного разупорядочения, стимулированные магнитным полем в системах со структурной неустойчивостью

2020 ◽  
Vol 62 (5) ◽  
pp. 710
Author(s):  
В.И. Вальков ◽  
А.В. Головчан ◽  
В.В. Коледов ◽  
Б.М. Тодрис ◽  
В.И. Митюк

A theoretical analysis of the features of structural and magnetostructural first-order phase transitions in magnetocaloric helimagnetic alloys of the Mn_{1-x}Cr_{x}NiGe system has been carried out. To describe the observed displacive structural transitions hex(P6_{3}/mmc)<->orth(P_{nma}), we used the local soft mode model in the approximation of a biased harmonic oscillator. In the absence of a magnetic field, the emergence of a helimagnetic order as a structurally induced second-order transition was described in the framework of the Heisenberg model, taking into account the dependence of the exchange integrals on the structural order parameters and elastic strains. In the presence of a magnetic field, it was found that the approximation of the characteristic temperatures for the helimagnetic HM(P_{nma}) and lability temperatures of the hexagonal paramagnetic PM(P6_{3}/mmc) states, due to the influence of the magnetic field, leads to the appearance of previously unexplored peripheral magnetostructural first-order phase transitions with insignificant magnetization jumps that increase with increasing magnetic induction.In this case, as the pressure increases to 4 kbar with constant induction of the magnetic field, the peripheral transitions transform into reversible first-order magnetostructural transitions, and at even higher pressures (10-14 kbar) into full-fledged first-order magnetostructural transitions with magnetization jumps comparable with maximum value of magnetization. Experimental pressure studies of the temperature dependences of magnetization in static magnetic fields with an induction of up to 1 T and a pressure of up to 14 kbar confirm the theoretical results.

1992 ◽  
Vol 03 (05) ◽  
pp. 1071-1082 ◽  
Author(s):  
D.B. ABRAHAM ◽  
P.J. UPTON

Problems associated with analyticity of thermodynamic functions close to first-order phase transitions are briefly reviewed. The bubble model for correlation functions is then applied to planar Ising-like models at subcritical temperatures (T<Tc) with a bulk magnetic field h. The fluctuation sum is used to calculate the susceptibility χ(h) from the bubble correlation function. We show that χ(h), calculated this way, must contain an essential singularity at h=0 i.e. at the first-order phase boundary. This has important implications to metastability, where we demonstrate that if the ensemble is restricted such that the magnetization stays positive when h goes negative, χ(h) has an infinite number of poles along the negative real axis with a limit-point at h=0. For an unrestricted ensemble, a Yang-Lee circle theorem is derived.


2017 ◽  
Vol 32 (26) ◽  
pp. 1750162 ◽  
Author(s):  
F. Márquez ◽  
R. Zamora

In this paper, we explore the critical end point in the [Formula: see text] phase diagram of a thermomagnetic nonlocal Nambu–Jona-Lasinio model in the weak field limit. We work with the Gaussian regulator, and find that a crossover takes place at [Formula: see text], [Formula: see text]. The crossover turns to a first-order phase transition as the chemical potential or the magnetic field increases. The critical end point of the phase diagram occurs at a higher temperature and lower chemical potential as the magnetic field increases. This result is in accordance to similar findings in other effective models. We also find that there is a critical magnetic field, for which a first-order phase transition takes place even at [Formula: see text].


2016 ◽  
Vol 17 (2) ◽  
pp. 193-197
Author(s):  
O.G. Medvedovs’ka ◽  
G.K. Chepurnykh ◽  
T.O. Fedorenko ◽  
S.V. Sokolov

On the example of first-order phase transitions in orthoferrites under the influence of an external magnetic field is shown the effectiveness of the application of the Landau theory of phase transitions, commonly used in second-order phase transitions. This is especially important when used Hamiltonian is a function of many variables.


1999 ◽  
Vol 14 (06) ◽  
pp. 407-415 ◽  
Author(s):  
R. FIORE ◽  
A. TIESI ◽  
L. MASPERI ◽  
A. MÉGEVAND

The broken-symmetry electroweak vacuum is destabilized in the presence of a magnetic field stronger than a critical value. Such magnetic field may be generated in the phase transition and restore the symmetry inside the bubbles. A numerical calculation indicates that the first-order phase transition is delayed but may be completed for a sufficient low value of the Higgs mass unless the magnetic field is extremely high.


2021 ◽  
pp. 2150270
Author(s):  
Erhan Albayrak

The external random magnetic field [Formula: see text] with three nodes, i.e. acting up and down along the [Formula: see text]-axis and zero, effective on the spins in the Blume-Capel model is analyzed on the Bethe lattice in terms of the exact recursion relations. All the nodes are assumed to have the same probability, [Formula: see text], so that the model could give various kinds of phase transitions. As a mapping of the phase transitions, the phase diagrams are constructed on two different planes which present very rich and interesting phase diagrams. In addition to the second- and first-order phase transitions, a few critical points, reentrant and double reentrant behaviors are also observed.


Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Francesco Bigazzi ◽  
Alessio Caddeo ◽  
Aldo L. Cotrone ◽  
Angel Paredes

Abstract Using the holographic correspondence as a tool, we study the dynamics of first-order phase transitions in strongly coupled gauge theories at finite temperature. Considering an evolution from the large to the small temperature phase, we compute the nucleation rate of bubbles of true vacuum in the metastable phase. For this purpose, we find the relevant configurations (bounces) interpolating between the vacua and we compute the related effective actions. We start by revisiting the compact Randall-Sundrum model at high temperature. Using holographic renormalization, we compute the derivative term in the effective bounce action, that was missing in the literature. Then, we address the full problem within the top-down Witten-Sakai-Sugimoto model. It displays both a confinement/deconfinement and a chiral symmetry breaking/restoration phase transition which, depending on the model parameters, can happen at different critical temperatures. For the confinement/deconfinement case we perform the numerical analysis of an effective description of the transition and also provide analytic expressions using thick and thin wall approximations. For the chiral symmetry transition, we implement a variational approach that allows us to address the challenging non-linear problem stemming from the Dirac-Born-Infeld action.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuchi He ◽  
Kang Yang ◽  
Mark Oliver Goerbig ◽  
Roger S. K. Mong

AbstractIn recent experiments, external anisotropy has been a useful tool to tune different phases and study their competitions. In this paper, we look at the quantum Hall charge density wave states in the N = 2 Landau level. Without anisotropy, there are two first-order phase transitions between the Wigner crystal, the 2-electron bubble phase, and the stripe phase. By adding mass anisotropy, our analytical and numerical studies show that the 2-electron bubble phase disappears and the stripe phase significantly enlarges its domain in the phase diagram. Meanwhile, a regime of stripe crystals that may be observed experimentally is unveiled after the bubble phase gets out. Upon increase of the anisotropy, the energy of the phases at the transitions becomes progressively smooth as a function of the filling. We conclude that all first-order phase transitions are replaced by continuous phase transitions, providing a possible realisation of continuous quantum crystalline phase transitions.


Sign in / Sign up

Export Citation Format

Share Document