scholarly journals Экспериментальное и теоретическое исследование высокоскоростного проникания длинных стержневых ударников в песок

2022 ◽  
Vol 92 (3) ◽  
pp. 392
Author(s):  
С.И. Герасимов ◽  
Ю.Ф. Травов ◽  
А.Г. Иоилев ◽  
В.В. Писецкий ◽  
Н.Н. Травова ◽  
...  

Results of computations with the use of improved modified Alekseevskii-Tate theory (IMATT) are compared to experimental data on high-velocity penetration of long rod projectiles into sand in the impact velocity range of V0=0.5-3.5 km/s. Projectiles were made of three different metals: M1 copper, WNZh tungsten heavy alloy and 30KhGSA steel. The value of hardening coefficient k in the linear dependence of the projectile material yield on pressure could be determined using IMATT and experimental data on dependence of differential penetration coefficient K on the penetration velocity. At penetration in regime of the hydrodynamic erosion of projectile, differential penetration coefficient K could be approximated just by dependence on the ratio of the impact velocity of penetration to the value of the critical velocity, above which the projectile deforms plastically during penetration. The values of the critical velocity may differ for specific projectile material properties as well as the density and the humidity of sand.

Author(s):  
William P. Walters ◽  
Cyril L. Williams

The Alekseevski-Tate equations have long been used to predict the penetration, penetration velocity, rod velocity, and rod erosion of long-rod projectiles or kinetic-energy penetrators [1]. These nonlinear equations were originally solved numerically, then by the exact analytical solution of Walters and Segletes [2, 3]. However, due to the nonlinear nature of the equations, the penetration was obtained implicitly as a function of time, so that an explicit functional dependence of the penetration on material properties was not obtained. Walters and Williams [4, 5, 6] obtained the velocities, length, and penetration as an explicit function of time by employing a perturbation solution of the non-dimensional Alekseevski-Tate equations. Algebraic equations were obtained for a third-order perturbation solution which showed excellent agreement with the exact solution of the Tate equations for tungsten heavy alloy rods penetrating a semi-infinite armor plate. The current paper employs this model to rapidly assess the effect of increasing the impact velocity of the penetrator and increasing the armor material properties (density and target resistance) on penetration. This study is applicable to the design of hardened targets.


2013 ◽  
Vol 644 ◽  
pp. 193-196 ◽  
Author(s):  
Min You ◽  
Kai Liu ◽  
Hai Zhou Yu ◽  
Ling Wu ◽  
Mei Li

The effect of the impact velocity on the responses of the adhesively bonded steel butt joint during Izod impact test and the failure procedure is studied using the finite element method software ABAQUS. The results obtained show that the failure time of the element becomes little shorter when the impact velocity increased from 3.2 m/s to 10.2 m/s. The peak value of the Seqv in element 1 increases first and then decreased when the impact velocity reached 4.2 m/s. When the impact velocity is higher than 6.2 m/s, the peak value of the Seqv increased again as the impact velocity increased until 10.2 m/s. It is recommended that the impact velocity of 3.2 m/s or 5.2 m/s is suitable for Izod impact test for the adhesively bonded steel butt joint.


1995 ◽  
Vol 117 (1) ◽  
pp. 45-52 ◽  
Author(s):  
S. A. Shirazi ◽  
J. R. Shadley ◽  
B. S. McLaury ◽  
E. F. Rybicki

A semi-empirical procedure has been developed for predicting erosion rates in pipe geometries, such as elbows and tees. The procedure can be used to estimate safe operating conditions and velocities in oil and gas production where sand is present. In the proposed procedure, a concept is introduced that allows determination of erosion rate for different pipe geometries. In the procedure, based on empirical observations, the erosion rate is related to the impact velocity of sand particles on a pipe fitting wall. A simplified particle tracking model is developed and is used to estimate the impact velocity of sand particles moving in a stagnation region near the pipe wall. A new concept of equivalent stagnation length allows the simplified procedure to be applicable to actual pipe geometries. The “equivalent stagnation regions” of an elbow and a tee geometry of different sizes are obtained from experimental data for small pipe diameters, and a computational model is used to extend the procedure to larger pipe diameters. Currently, the prediction method applies to mild steel and accounts for the effects of sand size, shape, and density; fluid density, viscosity, and flow speed; and pipe size and shape. The proposed method has been verified for gas and liquid flows through several comparisons with experimental data reported in the literature. The results of the model accurately predict the effects of sand size and fluid viscosity observed in the experiments. Furthermore, predicted erosion rates showed good agreement with experimental data for gas, liquid, and gas-liquid flows in several 50.8-mm (2-in.) elbows and tees.


2014 ◽  
Vol 566 ◽  
pp. 353-358
Author(s):  
Jian Ming Yuan ◽  
Geoffrey E.B. Tan

Depth of penetration (DOP) test of ceramic tile subjected to long rod impact was analyzed by applying the Tate model. This paper investigated the influence of impact velocity and tile thickness on the ballistic performance measurement of the tested ceramic tiles. DOP test was simplified as an eroding rod penetrating a target composed of multilayered materials. Through applying the Tate model, the method of obtaining the numerical solution was proposed. For a constant impact velocity, it was found that the measured differential tile efficiency (DEF) was independent of the thickness of the ceramics tiles. But the measured DEF decreased as the impact velocity increased. These analytical conclusions were verified by the using of the results of DOP tests of SiC and Al2O3 tiles subjected to impact of long tungsten alloy rods at a nominal impact velocity of 1.3 km/s.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Baran Yildirim ◽  
Hirotaka Fukanuma ◽  
Teiichi Ando ◽  
Andrew Gouldstone ◽  
Sinan Müftü

Specific mechanisms underlying the critical velocity in cold gas particle spray applications are still being discussed, mainly due to limited access to in situ experimental observation and the complexity of modeling the particle impact process. In this work, particle bonding in the cold spray (CS) process was investigated by the finite element (FE) method. An effective interfacial cohesive strength parameter was defined in the particle–substrate contact regions. Impact of four different metals was simulated, using a range of impact velocities and varying the effective cohesive strength values. Deformation patterns of the particle and the substrate were characterized. It was shown that the use of interfacial cohesive strength leads to a critical particle impact velocity that demarcates a boundary between rebounding and bonding type responses of the system. Such critical bonding velocities were predicted for different interfacial cohesive strength values, suggesting that the bonding strength in particle–substrate interfaces could span a range that depends on the surface conditions of the particle and the substrate. It was also predicted that the quality of the particle bonding could be increased if the impact velocity exceeds the critical velocity. A method to predict a lower bound for the interfacial bonding energy was also presented. It was shown that the interfacial bonding energy for the different materials considered would have to be at least on the order of 10–60 J/m2 for cohesion to take place. The general methodology presented in this work can be extended to investigate various materials and impact conditions.


Author(s):  
Steven M. Whitaker ◽  
Jeffrey P. Bons

Three particle impact models have been evaluated to determine their ability to predict particle material properties and restitution coefficients using experimental data for the coefficient of restitution of particles impacting a 410 stainless steel plate. The particles consisted of PMMA and three coal fly ashes: JBPS, Bituminous, and Lignite. Particle speeds ranged from approximately 20 to 120 meters per second, and the nominal impact angle was approximately 85 degrees. Flow temperatures for the ash particulate experiments were set at 295 K and 395 K. The impact models were applied to the experimental data via curve fitting to evaluate the yield stress of the particulate, which was known for the PMMA. For the ash particulate, a linear law of mixtures was used to approximate the modulus of elasticity and Poisson’s ratio for use in the yield stress determination. A Hertzian mechanics model was shown to over-predict the yield stress of the PMMA particulate, indicating that, for known material properties, they would under-predict the coefficient of restitution. A Plastic-JKR model and a finite element based model by Wu et al. showed good agreement between the calculated yield stress and known range of yield stress values for the PMMA particulate, indicating that the model would accurately predict restitution coefficients for particulate with known material properties (or could be used to accurately determine the material properties from experimental coefficient of restitution data). However, some questions remain as to the ability of these models to be used for non-spherical, conglomerate type particulate. A thorough overview of the impact process is provided, and the application of the results of the study to the development of a physics-based universal impact and deposition model is presented.


Author(s):  
Tien-Chien Jen ◽  
Sung-Cheng Wong ◽  
Yi-Hsin Yen ◽  
Qinghua Chen ◽  
Quan Liao

This paper presents a numerical analysis of the particle critical velocity on the bonding efficiency in Cold Gas Dynamic Spray (CGDS) process by using ABAQUS/CAE 6.9-EF1. The particle impact temperature in CGDS is one of the most important factors that can determine the properties of the bonding strength to the substrate. In the CGDS process, bonding occurs when the impact velocity of particles exceed a critical velocity [1], which can reach minimum interface temperature of 60% of melting temperature in °C [2]. The critical velocity depends not only on the particle size, but also the particle material. Therefore, critical velocity should have a strong effect on the coating quality. In the present numerical analysis, impact velocities were increased in steps of 100 m/s from the lowest simulated impact velocity of 300 m/s. This study illustrates the substrate deformations and the transient impact temperature distribution between particle(s) and substrate. In this paper, an explicit numerical scheme was used to investigate the critical velocity of different sizes of particle during the bonding process. Finally, the computed results are compared with the experimental data. Copper particles (Cu) and Aluminum substrate (Al) were chosen as the materials of simulation.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


2021 ◽  
Vol 46 ◽  
pp. 101468
Author(s):  
Periyasamy Kaliyappan ◽  
Andreas Paulus ◽  
Jan D’Haen ◽  
Pieter Samyn ◽  
Yannick Uytdenhouwen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document