scholarly journals Влияние связующего и красителей на механизм туннельной люминесепнции микрокристаллов AgBr(I)

2020 ◽  
Vol 128 (8) ◽  
pp. 1100
Author(s):  
А.В. Тюрин ◽  
С.А. Жуков ◽  
А.Ю. Ахмеров

It was previously found that in emulsion microcrystals (EMC) AgBr (I) (with silver content corresponding to pBr 4), the centers responsible for tunneling recombination at T = 77 K, with a maximum of luminescence at λmax~ 560 nm when excited from light from the absorption region of AgBr (I) EMCs (λ ~ 450 nm) as a result of temperature quenching, they undergo structural transformation into centers, which, under the same excitation, provide tunneling recombination with a wavelength depending on the binder: for EMC AgBr (I) obtained in water ‒ λmax~ 720 nm, in gelatin ‒ λmax~ 750 nm. In the present work, similar structural transformations of the centers determining tunneling recombination with λmax~ 560 nm, to the centers with luminescence on λmax~ 720 nm were implemented for AgBr (I) EMCs synthesized in polyvinyl alcohol (PVA) with an increase in the content of silver ions in the emulsion (from pBr 4 to 7). Responsible for this transformation, as follows from the obtained results, are mobile interstitial silver ions Agi +, which transform these tunnel recombination centers. The effect of the binder on the recombination processes in EMC AgBr (I) is manifested in changes in the kinetics of the increase in luminescence with λmax~ 560 nm upon excitation by light from the absorption region of AgBr (I) EMC (λ ~ 450 nm) to a stationary level. For a binder whose molecules do not interact with Ag centers Agin+, n = 1, 2 (water, PVA at pBr 4), increase in luminescence with λmax~ 560 nm occurs monotonically from zero to the maximum stationary level. For a binder (in our case, G is gelatin), whose molecules with centers Agin+ (n = 1,2) form complexes (Agin0G+), the kinetics of the increase in luminescence in EMC AgBr (I) to a stationary level at λmax~ 560 nm at pBr 4 is characterized by the presence of “flash flare”. Adsorption on the surface of EMC AgBr (I) (in PVA at pBr 7) of the dye is manifested as follows: if, before the introduction of the dye, the kinetics of the increase in luminescence with λmax~ 560 nm, when excited from light from the absorption region of AgBr (I) EMC (λ ~ 450 nm) to a stationary level, “flare-up” appeared, then after the introduction of the dye, the luminescence increases with λmax~ 560 nm occurs monotonically from zero to the maximum stationary level. Studies of the “flash” of luminescence stimulated by infrared (IR) light, after the termination of the action of exciting light, showed that when the kinetics of the increase in luminescence with λmax~ 560 nm to the stationary level, it exhibits "flare-up", a "flash" stimulated by IR light is not observed at λ ~ 560 nm. In the absence of “flash flare”, a “flash” at λ ~ 560 nm is observed. From our point of view, the results obtained indicate that “flare-up burning” is due to the presence of deep centers of electron localization with a small capture cross section, and not a photochemical reaction stimulated by exciting light. Key words: AgBr (I) microcrystals, emulsions, glow centers, luminescence flare-up.

2020 ◽  
Vol 11 (3) ◽  
pp. 11054-11065

The article is devoted to the study of the forms of moisture bond in mature cheeses. The kinetics of mass transfer processes depend on the mobility and binding energy of water with solid and dissolved substances. Therefore, the removal of bound water is accompanied by deterioration in kinetics and increased energy consumption. In this regard, information on the state of bound water in substances during dehydration is very important from a scientific point of view and from a practical one. Based on the studies carried out, the forms of moisture bond in various types of cheese were determined by strain-gauge and thermographic methods. Based on this, it has been established that the forms of moisture bond in cheeses can be determined by strain-gauge and thermographic methods.


1990 ◽  
Vol 68 (9) ◽  
pp. 760-767 ◽  
Author(s):  
J. A. Tuszynski ◽  
M. Otwinowski

In this paper we investigate the family of nonlinear partial differential equations used to describe the kinetics of critical phenomena within the Landau–Ginzburg model. An analysis of the recently obtained symmetry-reduction results for a number of such equations is provided from the point of view of pattern formation at criticality. Various possibilities occur depending on the choice of control parameters. An illustration is provided using several physical examples such as metamagnets and liquid crystals.


2007 ◽  
Vol 4 (3) ◽  
pp. 918-921 ◽  
Author(s):  
P. Fabeni ◽  
V. Kiisk ◽  
A. Krasnikov ◽  
M. Nikl ◽  
G. P. Pazzi ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. Kundu ◽  
A. Kumar

Increasing interest in biomining process and the demand for better performance of the process has led to a new insight toward the mining technologies. From an engineering point of view, the complex network of biochemical reactions encompassed in biomining would best be performed in reactors which allow a good control of the significant variables, resulting in a better performance. The subprocesses are in equilibrium when the rate of particular metal ion; for example, iron turnover between the mineral and the bacteria, is balanced. The primary focus is directed towards improved bioprocess kinetics of the first two subprocesses of chemical reaction of the metal ion with the mineral and later bacterial oxidation. These subprocesses are linked by the redox potential and controlled by maintenance of an adequate solids suspension, dilution rate, and uniform mixing which are optimised in bioreactors during mining operations. Rate equations based on redox potential such as ferric/ferrous-iron ratio have been used to describe the kinetics of these subprocesses. This paper reviews the basis of process design for biomining process with emphasis on engineering parameters. It is concluded that the better understanding of these engineering parameters will make biomining processes more robust and further help in establishing it as a promising and economically feasible option over other hydrometallurgical processes worldwide.


2003 ◽  
Vol 762 ◽  
Author(s):  
J. Whitaker ◽  
P. C. Taylor

AbstractWe report the temperature dependence of the growth and decay of the optically induced electron spin resonance (LESR) on short and long time scales (10-3 s < t < 2500 s). This range of times spans the region between previously published photoluminescence and the LESR data. In addition, we examine the steady-state density of optically excited charge carriers as a function of temperature. These measurements lead to a better understanding of the band tail structure of amorphous silicon as well as the kinetics of the excitation and recombination processes.


1956 ◽  
Vol 34 (5) ◽  
pp. 473-490 ◽  
Author(s):  
K. A. Jackson ◽  
Bruce Chalmers

The kinetic theory of melting and freezing is developed from consideration of atom movements at an interface between solid and liquid. The equations developed are shown to have the same form as the corresponding thermodynamic equations. The homogeneous nucleation of a solid phase in a liquid is then considered from the point of view of this theory. Agreement with experimental observation is obtained on the following points. (1) The supercooling at which homogeneous nucleation occurs is proportional to the absolute equilibrium temperature. (2) The surface free energy per atom used in the quasi-thermodynamic treatment of nucleation should be equal to one-half the latent heat per atom. (3) The amount of liquid supercooled has a very small effect on the temperature at which homogeneous nucleation occurs.


2005 ◽  
Vol 7 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Ignazio Renato Bellobono ◽  
Franca Morazzoni ◽  
Riccardo Bianchi ◽  
Emilia Simona Mangone ◽  
Rodica Stanescu ◽  
...  

Kinetics of photocatalytic oxidation of methane, ethane,n-heptane,n-decane, andn-dodecane, to yield intermediates, and photomineralisation of intermediates, to yield carbon dioxide and water, was studied in aqueous solution, by a laboratory-scale photoreactor and photocatalytic membranes immobilizing30±3wt.% ofTiO2, in the presence of stoichiometric hydrogen peroxide as oxygen donor. The whole volume of irradiated solution was4.000±0.005L, the ratio between this volume and the geometrical apparent surface of the irradiated side of the photocatalytic membrane was3.8±0.1cm, and the absorbed power 0.30W/cm (cylindrical geometry). A kinetic model was used, by which mineralisation of substrate toCO2was supposed to occur, by kinetic constantsk1, through one single intermediate, mediating the behaviour of all the numerous real intermediates formed in the path from the substrate toCO2(kinetic constants of formation of the latter beingk2). A competitive Langmuirian adsorption of both substrate and “intermediate” was also supposed to be operative, as expressed by apparent adsorption constantsk1andk2, possessing a, partly at least, kinetic significance. By Langmuir-Hinshelwood treatment of initial rate data, starting values of thekandKcouples were obtained, from which, by a set of differential equations, the final optimised parameters,k1andk1,k2andK2, were calculated, able fit the whole photomineralisation curve, and not only its initial segment, as the Langmuirian parameters do. The parameters of present work are critically compared with those obtained in two preceding set of studies relative ton-alkanoic acids and ton-alkanols. They are interpreted on the basis of a closer behaviour of hydrocarbons to alkanols, from the photocatalytic point of view, than to carboxylic acids are. Discussion of limiting effective quantum yields, and their comparison with maximum, theoretical values, are also carried out.


2019 ◽  
Vol 13 (1) ◽  
pp. 012004 ◽  
Author(s):  
Kazunobu Kojima ◽  
Fumimasa Horikiri ◽  
Yoshinobu Narita ◽  
Takehiro Yoshida ◽  
Hajime Fujikura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document