scholarly journals Взаимодействие низкоэнергетических электронов с молекулами D-рибозы

2021 ◽  
Vol 129 (12) ◽  
pp. 1471
Author(s):  
И.В. Чернышова ◽  
Е.Э. Контрош ◽  
О.Б. Шпеник

Abstract– The interactions of low-energy electrons (<20 eV) with D-ribose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of D-ribose molecules occurs effectively even at an electron energy close to zero. as well as in the energy range 5.50–9.50 eV. In the total cross section of electron scattering by molecules, resonance features at energies of 5.00–9.00 eV in the region of formation of ionic fragments C3H4O2–, C2H3O2–, OH–, associated with the destruction of molecular heterocycles, were experimentally discovered for the first time. The correlation of the features observed in the scattering and dissociative electron attachment cross sections is analyzed.

2017 ◽  
Vol 8 ◽  
pp. 2583-2590 ◽  
Author(s):  
Jusuf M Khreis ◽  
João Ameixa ◽  
Filipe Ferreira da Silva ◽  
Stephan Denifl

Interactions of low-energy electrons with the FEBID precursor Cr(CO)6 have been investigated in a crossed electron–molecular beam setup coupled with a double focusing mass spectrometer with reverse geometry. Dissociative electron attachment leads to the formation of a series of anions by the loss of CO ligand units. The bare chromium anion is formed by electron capture at an electron energy of about 9 eV. Metastable decays of Cr(CO)5 − into Cr(CO)4 −, Cr(CO)4 − into Cr(CO)3 − and Cr(CO)3 − into Cr(CO)2 − are discussed. Electron-induced dissociation at 70 eV impact energy was found to be in agreement with previous studies. A series of Cr(CO) n C+ (0 ≤ n ≤ 3) cations formed by C–O cleavage is described for the first time. The metastable decay of Cr(CO)6 + into Cr(CO)5 + and collision-induced dissociation leading to bare Cr+, are discussed. In addition, doubly charged cations were identified and the ration between doubly and singly charged fragments was determined and compared with previous studies, showing considerable differences.


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
S. Hassanpour ◽  
S. Nguyen-Kuok

Cross sections in the very low energy range are also represented by the modified effective-range theory (MERT) for low-energy electron scattering from the rare gas (argon). Simulations using published (theoretical) phase shifts indicate that extended versions of the standard effective-range theory with four adjustable parameters are required to give an adequate description of the phase shifts for argon. A four-parameter MERT fit gives a good representation of a recent electron–argon (e-Ar) total cross section experiment at energies less than 10.0 eV. Cross section Q(l) (E) for collision in dilute gases is given for any order l. Here Q(l) (E) are presented for l = 1. . .6. We present calculations for the elastic cross sections for electron scattering from argon. The improvement in the agreement between our theoretical calculations and the experimental measurements in the case of argon in scattering calculations are showed. Differential scattering experiments have been performed for the systems e-Ar in the energy range E = 0–10 eV and the angular range θ = 0–20° using a crossed-beam arrangement. Differential and integrated cross sections for the elastic scattering of low- and intermediate-energy (0–50 eV) electrons by argon atoms are calculated. For each impact energy, the phase shifts of the lower partial waves are obtained exactly by numerical integration of the radial equation. Transport coefficients of argon plasma are requested exactly, which is why we calculated the average collision cross sections for s = 1. . .11, l = 1. . .6.


2000 ◽  
Vol 53 (3) ◽  
pp. 399 ◽  
Author(s):  
M. H. F. Bettega ◽  
M. A. P. Lima ◽  
L. G. Ferreira

We report results from an ab initio calculation of low-energy electron scattering by OCS molecules. We used the Schwinger multichannel method with pseudopotentials at the fixed-nuclei static-exchange approximation to calculate elastic integral, differential and momentum transfer cross sections in the energy range from 5 to 50 eV. We compare our results with available theoretical results and experimental data. Through the symmetry decomposition of our integral cross section and eigenphase sum analysis, we found structures in the cross sections that may be interpreted as shape resonances for ∑, ∏ and Δ symmetries. We compared the results for OCS with our previous results on the e––CS2 collision. In particular, we found a similar behaviour in the shape of the symmetry decomposed cross sections of OCS and of CS2 when, for the latter, we sum over the ‘g’ and ‘u’ contributions.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


2020 ◽  
Vol 21 (18) ◽  
pp. 6947
Author(s):  
Filipe Costa ◽  
Ali Traoré-Dubuis ◽  
Lidia Álvarez ◽  
Ana I. Lozano ◽  
Xueguang Ren ◽  
...  

Electron scattering cross sections for pyridine in the energy range 0–100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.


2020 ◽  
Vol 22 (11) ◽  
pp. 6100-6108 ◽  
Author(s):  
Filipe Ferreira da Silva ◽  
Rachel M. Thorman ◽  
Ragnar Bjornsson ◽  
Hang Lu ◽  
Lisa McElwee-White ◽  
...  

In this study, we present experimental and theoretical results on dissociative electron attachment and dissociative ionisation for the potential FEBID precursor cis-Pt(CO)2Cl2.


1990 ◽  
Vol 68 (2) ◽  
pp. 166-169 ◽  
Author(s):  
Mohammad F. Mahmood

An investigation was made of the process of dissociative excitation of a HgCl radical in the B2Σ+1/2 state due to collisions of low-energy electrons with HgCl2 and CH3HgCl molecules. Using the most intense band of the B2Σ+1/2 – X2Σ+1/2 system of the HgCl radical at 557 nm that corresponds to the ν′ = 0 to ν″ = 22 transition, emission cross sections were measured in the electron energy range 1–100 eV. The threshold electron energy for the observation of the B2Σ+1/2 – X2Σ+1/2 band system has been determined to be 7.0 and 8.0 eV for HgCl2 and CH3HgCl molecules, respectively.


Sign in / Sign up

Export Citation Format

Share Document