scholarly journals Эмиссионные спектры молекулярных газов CHF-=SUB=-3-=/SUB=-, CCl-=SUB=-2-=/SUB=-F-=SUB=-2-=/SUB=-, SF-=SUB=-6-=/SUB=- в диапазоне 3-20 nm при импульсном лазерном возбуждении с использованием различных газовых струй в качестве мишеней

2022 ◽  
Vol 130 (2) ◽  
pp. 217
Author(s):  
В.Е. Гусева ◽  
А.Н. Нечай ◽  
А.А. Перекалов ◽  
Н.Н. Салащенко ◽  
Н.И. Чхало

The article considers the results of studies of the emission spectra of CHF3, CCl2F2, SF6 upon excitation by pulsed laser radiation. We used Nd:YAG laser, λ = 1064 nm, τ = 5 ns, and Epulse = 0.8 J. The spectral range of 3-20 nm was studied. We used capillary and supersonic conical nozzles with dcrit = 145 μm, 2α = 12o, L = 5 mm, and dcrit = 450 μm, 2α = 11o, L = 5 mm to form an atomic cluster beam. The emission spectra for various gas targets were obtained, the obtained spectra were deciphered, and the ions emitting in this spectral range were determined. We observed that with increasing particle concentration in the zone of laser spark, the radiation intensity increases. In this case, the intensity of ion lines with high degrees of ionization increases faster.

2021 ◽  
Vol 129 (2) ◽  
pp. 146
Author(s):  
А.Н. Нечай ◽  
А.А. Перекалов ◽  
Н.Н. Салащенко ◽  
Н.И. Чхало

The article considers the results of studies of the emission spectra of Ne and Ar upon excitation by pulsed laser radiation. We used Nd: YAG laser, λ = 1064 nm, τ = 5 ns, and Epulse = 0.8 J. The spectral range of 3-20 nm was studied. We used capillary and supersonic conical nozzles with dcr = 145 μm, 2α = 12o, L = 5 mm, and dcr = 450 μm, 2α = 11o, L = 5 mm to form an atomic cluster beam. The emission spectra for various gas targets were obtained, the obtained spectra were deciphered, and the ions emitting in this spectral range were determined. We observed that with increasing particle concentration in the zone of laser spark, the radiation intensity increases. In this case, the intensity of ion lines with high degrees of ionization increases faster.


2021 ◽  
Vol 129 (6) ◽  
pp. 755
Author(s):  
А.Н. Нечай ◽  
А.А. Перекалов ◽  
Н.И. Чхало ◽  
Н.Н. Салащенко

The article considers the results of studies of the emission spectra of N2 and CO2 upon excitation by pulsed laser radiation. We used Nd: YAG laser, λ = 1064 nm, τ = 5 ns, and Epulse = 0.8 J. The spectral range of 3-20 nm was studied. We used capillary and supersonic conical nozzles with dcr = 145 μm, 2α = 12o, L = 5 mm, and dcr = 450 μm, 2α = 11o, L = 5 mm to form an atomic cluster beam. The emission spectra for various gas targets were obtained, the obtained spectra were deciphered, and the ions emitting in this spectral range were determined. We observed that with increasing particle concentration in the zone of laser spark, the radiation intensity increases. In this case, the intensity of ion lines with high degrees of ionization increases faster.


2021 ◽  
Vol 129 (3) ◽  
pp. 266
Author(s):  
А.Н. Нечай ◽  
А.А. Перекалов ◽  
Н.Н. Салащенко ◽  
Н.И. Чхало

The article considers the results of studies of the emission spectra of Kr, Xe upon excitation by pulsed laser radiation. We used Nd: YAG laser, λ = 1064 nm, τ = 5 ns, and Epulse = 0.8 J. The spectral range of 30-200A was studied. We used capillary with d = 500 μm and supersonic conical nozzles with dcr = 145 μm, 2α = 12o, L = 5 mm, and dcrit = 450 μm, 2α = 11o, L = 5 mm to form a gas jet. The emission spectra for various gas targets were obtained, the obtained spectra were deciphered, and the ions emitting in this spectral range were determined. We observed that with increasing particle concentration in the zone of laser spark, the radiation intensity increases. In this case, the intensity of ion lines with high degrees of ionization increases faster.


2021 ◽  
Vol 129 (2) ◽  
pp. 185-190
Author(s):  
A. N. Nechay ◽  
A. A. Perekalov ◽  
N. N. Salashchenko ◽  
N. I. Chkhalo

2014 ◽  
Vol 59 (12) ◽  
pp. 1149-1154
Author(s):  
A.D. Mamuta ◽  
◽  
V.S. Voitsekhovich ◽  
N.M. Kachalova ◽  
L.F. Golovko ◽  
...  

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Sign in / Sign up

Export Citation Format

Share Document