scholarly journals Импедансная спектроскопия электропроводящих композиционных материалов на основе микроволокон сополимера поливинилиденфторида с трифторэтиленом, модифицированных полипирролом

Author(s):  
В.М. Капралова ◽  
И.Ю. Сапурина ◽  
Н.Т. Сударь ◽  
А.А. Третьяков ◽  
O. Gryshkov ◽  
...  

The impedance spectra of composite nonwoven materials based on nano- and microfibers of polyvinylidene fluoride-trifluoroethylene copolymer modified by polypyrrole with different doping degree were studied in the frequency range 1000 Hz-5 MHz. It was found that an increase in the doping degree of polypyrrole coating of nanofibers leads to a decrease in the imaginary and real components of the electrical impedance. Regardless of their magnitude, the shape of the hodographs is close to circular arc resting on the ReZ axis, which allows us to consider the studied material as a nanocomposite polymer electrolyte whose dielectric characteristics can be reversibly changed.

2015 ◽  
Vol 29 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Ákos Kertész ◽  
Zuzana Hlaváčová ◽  
Eszter Vozáry ◽  
Lenka Staroňová

Abstract Electrical properties of food materials can give information about the inner structure and physiological state of biological tissues. Generally, the process of drying of fruits and vegetables is followed by weight loss. The aim of this study was to measure the impedance spectra of carrot slices during drying and to correlate impedance parameters to moisture content in different drying periods. Cylindrical slices were cut out from the carrot root along the axis. The slices were dried in a Venticell 111 air oven at 50°C. The weight of the slices was measured with a Denver SI-603 electronic analytical and precision balance. The weighing of the samples was performed every 30 min at the beginning of drying and every 60 min after the process. The moisture content of the samples was calculated on wet basis. The magnitude and phase angle of electrical impedance of the slices were measured with HP 4284A and 4285A precision LCR meters in the frequency range from 30 Hz to 1 MHz and from 75 kHz to 30 MHz, respectively, at voltage 1 V. The impedance measurement was performed after weighting. The change in the magnitude of impedance during drying showed a good correlation with the change in the moisture content.


Author(s):  
O. A. Samedov ◽  
O. Z. Alekperov ◽  
Kh. B. Orudjova ◽  
N. M. Mehtiyev ◽  
A. I. Nadjafov ◽  
...  

In this article, the authors carry out a pioneering study of monocrystalline TlInS[Formula: see text] at higher than room-temperatures using impedance spectroscopy. It is shown that in TlInS[Formula: see text] crystals at temperatures higher than 400 K, the nature of conductivity is predominantly ionic. Moreover, characteristics of impedance spectra behavior of TlInS[Formula: see text] monocrystal samples were studied using the measurement frequency range of 25–106 Hz. For the measured frequency range, it is shown that curves of active and reactive impedance components undergo a dispersion characterized by decreasing values of [Formula: see text] and [Formula: see text], as the frequency of the electric field and radiation dose increases.


2011 ◽  
Vol 471-472 ◽  
pp. 373-378 ◽  
Author(s):  
N. Muda ◽  
Salmiah Ibrahim ◽  
Norlida Kamarulzaman ◽  
Mohamed Nor Sabirin

This paper describes the preparation and characterization of proton conducting nanocomposite polymer electrolytes based a polyvinylidene fluoride-co-hexapropylene (PVDF-HFP) for protonic electrochemical cells. The electrolytes were characterized by Differential Scanning Calorimetry (DSC) and Impedance Spectroscopy (IS). It is observed that the crystallinity of the PVDF-HFP-NH4CF3SO3 system slightly increase upon addition of SiO2 nanofiller. The PVDF-HFP-NH4CF3SO3-SiO2 electrolytes reveals the existence of two conductivity maxima at 1 and 4 wt% of SiO2 concentration attributed to two percolation thresholds in the nanocomposite polymer electrolyte. The optimum value of conductivity of 1.07 × 10-3 S cm-1 is achieved for the nanocomposite polymer electrolyte film with 1 wt% SiO2. Protonic electrochemical cells was fabricated with a configuration Zn + ZnSO4.7H2O + PTFE (anode) | PVDF-HFP:NH4CF3SO3+SiO2 (electrolyte) | MnO2 + PTFE (cathode). The maximum open circuit voltage (OCV) is ~1.50 V and discharge characteristics of the cell were studied at different loads of resistances.


Sign in / Sign up

Export Citation Format

Share Document