scholarly journals Motion Characteristics and Kinematics of Fresh Spermatozoa of Gir, Surti and Murrah Bulls Assessed By Computer Assisted Semen Analyzer

Author(s):  
A.J. Dhami ◽  
P.K. Pathak ◽  
D.V. Chaudhari ◽  
K. K. Hadiya

A study was carried out on semen of nine breeding bulls, three each of Gir, Surti and Murrah breeds, to evaluate the comparative motion characteristics and kinematics of their fresh spermatozoa by CASA. The ejaculates (n=72, 24 of each breed) having >75% initial motility were diluted @ 80 million sperm/ml using TFYG extender and were assessed for motion characteristics by CASA. The overall mean values of rapid motile and immotile sperm per cent were observed significantly greater in Gir bulls semen, while total motile and slow motile sperms were apparently higher in buffalo semen. The mean values of sperm velocity/ kinematic parameters observed based on all motile sperms in Gir, Surti and Murrah bulls semen were: average path velocity 50.01±1.25, 48.51±1.03 and 49.14±1.30 μm/s; curvilinear velocity 88.62±1.66, 87.90 ±1.74 amd 88.93±1.69 μm/s, straight line velocity 44.51±1.35, 43.14±1.12 amd 41.73±2.24 μm/s; linearity 50.06±1.42, 48.86±1.32 amd 48.49±1.84 %; straightness 85.17±0.92, 84.97±0.88 and 83.90±1.17 %; wobbling index 57.00±1.17, 55.32±1.05 and 55.30±1.48 %; beat-cross frequency 15.55±0.58, 16.14±0.43 and 14.97±0.54 hz; amplitude of lateral head displacement 2.39±0.18, 2.57±0.12 and 2.31±0.14 μm; dancing frequency 208.34±15.52,225.00 ±10.74 and 211.29±13.03 μm2/s, and dancing mean 5.70±0.46, 6.33±0.35 and 6.33±0.50 μm2/s, respectively. Almost similar trend with little higher values were noted for sperm velocity/kinematics based on only progressively motile sperm, without breed/species variation. The semen of all three breeds behaved identically for sperm kinematics. The bull variation was insignificant for all the traits in all the three breeds.

2016 ◽  
Vol 50 (1) ◽  
Author(s):  
J. B. Patel ◽  
A. J. Dhami

Sixty semen ejaculates from 10 mature bulls, 5 each of Jafarabadi and Mehsana breed, were studied for sperm motility and velocity parameters of fresh and frozen-thawed spermatozoa using computer assisted sperm analyzer (CASA). The mean values of motile and progressively motile spermatozoa observed in fresh semen of Jafarabadi and Mehsana bulls (79.77±1.62 and 61.80±1.85, and 78.90±1.22 and 61.37±1.58%) were highly significantly (P<0.01) reduced (51.20±1.57 and 33.20±1.45, and 52.10±1.70 and 34.30±1.54 %, respectively) in post-thawed semen. The average path velocity, straight line velocity and curvilinear velocity (μm/sec) of spermatozoa of Jafarabadi and Mehsana bulls noted in fresh semen were also reduced highly significantly (P<0.01) in frozen-thawed semen. Among the other velocity parameters, amplitude of lateral head displacement (μm), elongation (%) and medium motile sperm (%) increased, while beat-cross frequency (Hz), straightness (%), linearity (%), sperm area (μm<sup>2</sup>) and rapidly motile sperm (%) decreased significantly in post-thawed sperms when compared with the fresh sperm of both Jafarabadi and Mehsana bulls. The initial motility and live sperm per cent were significantly correlated with CASA traits of fresh and frozen-thawed semen, and all the sperm motility and velocity traits of fresh and frozen-thawed semen assessed by CASA were significantly interrelated among both the breeds. The interrelationships were stronger in Mehsana bulls as compared to Jafarabadi bulls.


2010 ◽  
Vol 22 (1) ◽  
pp. 204
Author(s):  
J. Dorado ◽  
M. J. Galvez ◽  
M. R. Murabito ◽  
S. Demyda ◽  
L. J. De Luca ◽  
...  

Tris-egg yolk-based diluents provide adequate cryoprotection for the sperm of most species. This study was conducted to compare the ability of Tris-glucose extender containing 2 different concentrations of egg yolk to maintain sperm motility and acrosome integrity of canine spermatozoa during 72 h of preservation. For this purpose, a total of 20 ejaculates from 4 clinically healthy dogs (2 Spanish Greyhound, 1 German Pointer, and 1 Crossbreed) were collected by digital manipulation. The sperm-rich fraction of each ejaculate was divided into 2 aliquots. Then, they were diluted in Tris-based extender and centrifuged at 700g for 8 min. Sperm pellets were resuspended in either Tris buffer added to 20% (EY20) or 10% centrifuged egg yolk (EY10) and cooled to 5°C over 72 h. The effects of these extenders on motility and acrosome integrity were assessed objectively using a computer-aided semen analyzer (Sperm Class Analyzer, Microptic SL, Spain) and Spermac® staining, respectively. Each cooled-rewarmed semen sample was evaluated after 24, 48, and 72 h of preservation. Sperm motion parameters shown by computer-assisted semen analysis (CASA) are progressively motile (PMS) and motile spermatozoa (MS), curvilinear velocity (CLV), average path velocity (APV), progressive speed (SLV), and lateral head displacement (LHD). Data were statistically analysed by ANOVA. Dependent variables expressed as percentages were arsine-transformed before analysis. Differences between mean values were evaluated by the Duncan method. Data were presented as mean ± SEM. Differences were considered significant when P < 0.05. Analyses were performed using the statistical package SPSS 12.0. A total of 98 172 motile sperm trajectories were analyzed by CASA: 52 259 in EY20 and 45 913 in EY10. After 24, 48, and 72 h of preservation, MS and PMS were statistically higher (P < 0.01) in EY20. No significant differences were found for LHD using either extender over a 72-h period. No significant differences were observed for CLV using either extender during the first 2 days. At Day 3, CLV data were significantly higher (P < 0.01) in EY20. Similarly, from Day 2, APV was significantly higher (P < 0.001) in EY20. After 24 h of preservation, SLV was statistically higher (P < 0.001) in EY10, whereas the opposite tendency was found at Day 3. No significant differences were observed for SLV using either extender after 48 h of preservation. During the first 2 days, acrosome integrity was statistically higher (P < 0.001) in EY20. At hour 72, higher acrosome integrity (P < 0.001) was observed in EY10. In conclusion, we have observed that the EY20 extender provided higher motility after 72 h of chilled preservation; however, the acrosome membrane integrity was better preserved in EY10.


2019 ◽  
Vol 31 (1) ◽  
pp. 142
Author(s):  
M. A. Lagares ◽  
N. C. Alves ◽  
A. L. A. Guimaraes ◽  
S. B. Luz ◽  
S. A. Diniz ◽  
...  

The pattern of sperm transport and survival in the mare’s reproductive tract is different between fresh and frozen-thawed semen. A probable reason for this difference is the biophysiological changes in sperm during cryopreservation of equine semen. These changes can impair motility of stallion sperm after thawing. The aim of the present work was to test the effect of different caffeine concentrations on stallion sperm motility after thawing. One ejaculate of 9 stallions was frozen with the INRA82 frozen extender, and after thawing, different caffeine concentrations were added to the semen samples according to the treatments: control INRA82 without caffeine addition (T1), T1+1mM caffeine (T2), T1+2mM caffeine (T3), T1+3mM caffeine (T4), T1+5mM caffeine (T5), T1+7.5mM caffeine (T6), and T1+10mM caffeine (T7). The analysis of sperm motility parameters was performed with a computer-assisted semen analyser in 4 time periods: immediately after semen samples thawing (t0) and 15min (t15), 30min (t30), and 40min (t40) after semen sample thawing. One semen sample of each treatment was thawed, and an aliquot was analysed for the following computer-assisted semen analysis characteristics: velocity curvilinear (VCL; µm s−1), velocity straight line (µm s−1), velocity average path (µm s−1), linearity (%), straightness (%), wobble (%), amplitude of lateral head displacement (µm), beat cross frequency (BCF; Hz), and percentage of total sperm motility (TM) and progressive sperm motility. The statistical analysis was performed with ANOVA and Duncan’s test. The sperm parameters progressive sperm motility, linearity, wobble, and amplitude of lateral head displacement did not differ among the treatments (P&gt;0.05). Immediately after addition (t0) of 5, 7.5, and 10mM caffeine concentrations, an increase of TM was observed (T5: 53.1%; T6: 45.9%; and T7: 47.4%) compared with the other treatments (T1: 37.5%; T2: 36.0%; T3: 36.6%; and T4: 32.3%; P&lt;0.05). Although after 15min of incubation (t15) the TM decreased compared with t0 in T5, T6, and T7 treatments, the percentage was comparable with the other treatments at t15, t30, and t40. The mean value for TM was higher with 5mM caffeine compared with the control group (38.6% v. 34.7%; P&lt;0.05), whereas for the 10mM caffeine treatment velocity straight line (19.9v. 17.1µm s−1), velocity average path (25.6v. 22.9µm s−1), and straightness (75.4v. 72.3%) were higher than the control (P&lt;0.05). For the 5, 7.5, and 10mM caffeine treatments, VCL and BCF were higher than the control (VCL: 33.9, 34.5, 36.8, and 31.5µm s−1, respectively; BCF: 8.1, 8.6, 9.0, and 7.2Hz, respectively). The remaining motility parameters did not differ until 40min after the treatment (P&lt;0.05). In conclusion, the addition of 5, 7.5, and 10mM caffeine concentrations after semen thawing increased TM and most of the sperm motility characteristics. However, given the complexities of sperm transport, capacitation, and so on, further experiments are needed to test whether caffeine treatments could be used to improve the fertilization rate of frozen-thawed equine semen.


2018 ◽  
Vol 30 (1) ◽  
pp. 144
Author(s):  
A. Martins ◽  
F. N. Marqui ◽  
T. E. Cruz ◽  
T. I. H. Berton ◽  
D. G. Souza ◽  
...  

We previously reported that single layer centrifugation (SLC) with Percoll® (GE Healthcare, Uppsala, Sweden) of fresh bovine semen resulted in improved sperm progressive motility and movement, as evidenced by computer-assisted sperm analyzer (CASA) after freezing-thawing. However, no report has been found in the literature on the use of Percoll Plus® (PP; GE Healthcare), a nontoxic colloid, for the same purpose. Thus, this study aimed to verify the effects of SLC-PP before bull sperm freezing on sperm kinematics after cryopreservation. Ejaculates were collected from 3 Nellore bulls (6 from each) using an artificial vagina. After collection, the semen was assessed and pooled, and then 1 billion spermatozoa either diluted [D; 1:2 (v/v)] in freezing extender (FE, without glycerol) or undiluted (UD) was layered on top of a 9-mL column of PP (in 15-mL centrifuge tubes) at concentrations of 70% or 90% to form the 70D, 70UD, 90D, and 90UD treatment groups. Following centrifugation for 13 min at 839 × g [except for the control (C) group], the supernatant was removed and the sperm pellet diluted to 50 × 106 sperm mL−1 in FE medium plus glycerol. Then, frozen–thawed sperm samples were analysed by CASA (MMC Sperm, St. Petersburg, Russia) for the following parameters: total motility (TM, %), progressive motility (PM, %), curvilinear velocity (VCL, µm−1), straight line velocity (VSL, µm s−1), average path velocity (VAP, µm s−1), amplitude of lateral head displacement (ALH, µm), beat cross frequency (BCF, Hz), linearity (LIN, %), and straightness (STR, %). For statistical analyses, ANOVA and Student-Newman-Keuls test were used. Data are presented as mean ± SEM with P < 0.05 taken as significant. No difference was found among the groups for TM, VSL, BCF, and STR. However, the percentage of PM was higher (P < 0.05) in the SLC-selected sperm samples (values ranging from 42.0 ± 7.0 to 47.4 ± 11.4) than in C (28.8 ± 5.0), and ALH was lower in 70UD (1.6 ± 0.12) and 70D (1.7 ± 0.10) than in C (1.9 ± 0.2). Moreover, 70UD (49.0 ± 1.0), 90UD (50.0 ± 3.0), and 90D (50.0 ± 4.0) displayed higher percentage of LIN (P < 0.05) compared with C (45.0 ± 2.0) and 70D (48.0 ± 3.0). On the other hand, similar results were obtained for VCL (from 126.3 ± 8.0 to 130.0 ± 20.5) and VAP (from 82.7 ± 14.5 to 85.1 ± 6.9) in C, 70UD, and 70D, but these values differed (P < 0.05) from those for VCL in 90UD (104.6 ± 10.3) and 90D (97.2 ± 22.0) as well as for VAP in 90UD (72.2 ± 11.0) and 90D (71.8 ± 9.6). These are the first data demonstrating favourable influences of SLC with 70% Percoll Plus® to select distinct sperm subpopulations as evidenced by enhanced PM, LIN, and ALH. Thus, SLC-PP could optimize the production of frozen bull semen by decreasing the number of sperm per insemination dose, and help to circumvent limitations associated with the poor semen quality sometimes found in bulls of high genetic merit. This research was funded by FAPESP # 2015/20986-3, MasterFertility and Tairana Artificial Insemination Station, Brazil.


Author(s):  
P K Pathak ◽  
A J Dhami ◽  
D V Chaudhari ◽  
K K Hadiya

A study was undertaken on semen of three mature bulls each of Gir, Surti and Murrah breed to evaluate the comparative motion characteristics and kinematics of their fresh and frozen-thawed spermatozoa by Biovis CASA. The ejaculates (n= 24/breed) having >75% initial motility were diluted @ 80 million sperm/ml using TFYG extender and were assessed. Amongst motility traits, the total motile, rapid progressive motile and slow progressive motile spermatozoa percentage decreased significantly by 23.08 - 30.09, 43.57 - 55.18, 9.12 - 22.75 %, respectively, plessthan0.01), while non-progressive motile sperm (4.78 - 21.48%) and immotile sperm (164.38 - 178.38 %) percentage increased significantly ( plessthan0.01) in frozen-thawed semen compared to that of fresh semen. The post-thaw quality of semen of all three breeds was in acceptable range. The mean values of sperm velocity/kinematic parameters observed in frozen-thawed semen of Gir, Surti and Murrah bulls, based on total motile sperms, viz., average path velocity, curvilinear velocity, straight line velocity, linearity, straightness, beat-cross frequency, amplitude of lateral head displacement, dancing frequency and dancing mean decreased significantly by 13.70 - 17.79; 9.76 - 12.95; 13.28 - 21.90; 7.28 - 9.68; 4.36 - 7.79; 15.56 - 25.15; 8.78 - 10.50; 6.16 - 18.67 and 12.98 - 15.96 %, respectively, as compared to that of their fresh semen samples. However, wobbling index remained almost same for both fresh and frozen semen. All motility traits differed but none of kinematics/velocity traits differed significantly between breeds/species. The values of all velocity parameters for progressive motile sperms were higher than total motile sperms in all three breeds. The effect of freezing-thawing on velocity and kinematic attributes was much less compared to absolute sperm motility, and both the fresh and frozen-thawed sperms behaved identically with respect to their velocity and kinematics. The rapid progressive motile sperm in both fresh (r=0.41 to 0.92) and frozen-thawed (r=044 to 0.88) semen had significant correlations with most of their velocity traits, and the later were significantly and positively or negatively inter-related among each other in semen of all three breeds. It was therefore concluded that cryopreservation process significantly reduces the motility and kinematics attributes of bovine spermatozoa and, CASA analysis of fresh semen for motility and velocity traits could predict the post-thawed sperm motility and velocity/ kinematics of spermatozoa.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Perumal ◽  
S. K. Srivastava ◽  
S. K. Ghosh ◽  
K. K. Baruah

The present study was undertaken to assess the motility and velocity parameters of sperm of freezable and nonfreezable ejaculates by computer-assisted sperm analyser (CASA) such as Hamilton-Thorne Semen Analyser IVOS 11 in mithun semen. Fifty ejaculates (twenty-five ejaculates each for freezable and nonfreezable semen ejaculates) were collected from ten matured mithun bulls. CASA parameters, motility parameters such as forward progressive motility (FPM) (%), nonprogressive motility (NPM) (%), total motility (TM) (%), and static sperms (SM) (%); velocity parameters such as curvilinear velocity (VCL) (μm/sec), straight line velocity (VSL) (μm/sec), average path velocity (VAP) (μm/sec), linearity (LIN) (%), straightness (STR) (%), wobble (WOB) (%), amplitude of lateral head displacement (ALH) (μm), and beat/cross-frequency (BCF) (Hz) were measured by CASA analyser. The result revealed that these parameters varied significantly (P<0.05) between the freezable and nonfreezable ejaculates and freezable ejaculates have significantly (P<0.05) higher value than nonfreezable ejaculates. It was concluded that most of the CASA parameters were significantly lower in nonfreezable ejaculates than in freezable ejaculates in mithun and confirmed that the CASA was effective for a quick and objective analysis of motility and velocity parameters in mithun semen.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1993
Author(s):  
Sabrina Gacem ◽  
Jaime Catalán ◽  
Anthony Valverde ◽  
Carles Soler ◽  
Jordi Miró

In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber (DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were evaluated using each chamber and a high-resolution camera capable of capturing a maximum of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear velocity—VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed along the CLC. However, all the kinematic variables had a higher value in a highly concentrated sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for donkey computerised sperm motility analysis.


2013 ◽  
Vol 25 (1) ◽  
pp. 154 ◽  
Author(s):  
F. Qeusada ◽  
J. Dorado ◽  
D. Acha ◽  
I. Ortiz ◽  
M. Urbano ◽  
...  

Several studies on sperm cooling and cryopreservation have been done in horses; however, only a few them have been developed in donkeys. In addition, no studies have been performed to freeze cooled stored donkey semen. Therefore, the aim of this study was to determine if it is possible to freeze donkey sperm after 24 h of cool storage. Semen was collected from 4 Andalusian donkeys by artificial vagina. After collection, each sample was separated into 2 aliquots; one of them was immediately frozen (t0) and the other one was cooled and stored before freezing (t24). The cryopreservation procedure consisted of a previous dilution of semen with EquiPro™. After that, semen was centrifuged and the sperm pellet resuspended with Gent® extender plus ethylene glycol (4%) to achieve a final concentration of 100 × 106 sperm mL–1. Sperm was slowly cooled to 5°C, loaded in 0.5-mL plastic straws and frozen in LN vapours. The second aliquot (t24) was diluted with Gent® extender to a final concentration of 50 × 106 sperm mL–1 and then cooled and stored at 5°C for 24 h. After that, cooled semen samples were cryopreserved following the same procedure as described above. Straws were thawed in a water bath at 37° for 30 s. Computer-assisted sperm motility analysis was performed. Total motility (TM), progressive motility (PM), and the following kinematic parameters: velocity curvilinear (VCL; µm s–1), velocity straight line (VSL; µm s–1), velocity average path (VAP; µm s–1), linearity (LIN; %), straightness (STR; %), wobble (WOB; %), amplitude of lateral head displacement (ALH; µm), and beat cross frequency (BCF; Hz) were compared between treatments by ANOVA. Results were expressed as mean ± standard error. Significant differences (P < 0.05) were found between treatments (t0 v. t24) for TM (63.76 ± 4.75 v. 51.67 ± 3.69), PM (36.01 ± 3.19 v. 27.24 ± 2.72), VCL (77.29 ± 0.65 v. 67.56 ± 0.78), VSL (58.50 ± 0.61 v. 52.11 ± 0.76), VAP (67.82 ± 0.64 v. 59.41 ± 0.79), LIN (57.90 ± 0.33 v. 59.53 ± 0.32), STR (70.39 ± 0.30 v. 72.43 ± 0.41), WOB (75.64 ± 0.22 v. 75.48 ± 0.32), ALH (1.88 ± 0.09 v. 1.69 ± 0.10), and BCF (6.28 ± 0.04 v. 6.51 ± 0.06). These preliminary results showed significant differences between cryopreservation at 0 and 24 h post-cooling; however, understanding that direct freezing is better in terms of sperm motility, cryopreservation of cooled stored semen could still be considered good according to the values obtained for sperm motility parameters after thawing. In our opinion, sperm centrifugation before cooling probably improve the results of cryopreservation 24 h post-cooling, due to the negative effect of seminal plasma on sperm viability during storage. In addition, the analysis of other sperm parameters would be useful to check more accurately differences between treatments. In conclusion, sperm motility parameters were higher in donkey semen samples immediately frozen after collection in comparison to semen samples cryopreserved after 24 h of cooling storage. Further studies are needed to improve cooling and cryopreservation procedures for freezing cooled stored donkey semen.


2009 ◽  
Vol 21 (9) ◽  
pp. 102
Author(s):  
S. M. H. Andrabi ◽  
M. Shahab

The present study was designed to investigate the bacterial species incriminated in bubaline semen and to find out the effectiveness of antibiotics (GTLS; gentamycin, tylosin and linco-spectin or SP; streptomycin and penicillin) in cryodiluent on bacterial control and quality of buffalo bull spermatozoa. For this purpose four experiments were conducted. In experiment 1, a total of 11 bacterial species were identified from buffalo ejaculates. The predominant bacteria were Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa in the ejaculates. In experiment 2, total aerobic bacterial counts in post-thaw samples were lower (P<0.05) in GTLS than in SP or NC (negative control). Fewer bacterial genera were identified in semen samples having GTLS than SP. Majority of the bacterial isolates from ejaculates showed more sensitivity towards GTLS than SP. In experiment 3, motilities (visual and computer-assisted), velocities (straight-line, average path and curvilinear), amplitude of lateral head displacement and plasma membrane integrity in post-thaw semen samples did not differ (P>0.05) due to antibiotics. Spermatozoal abnormalities (acrosome, head, mid-piece and tail) were lower (P<0.05) in GTLS and SP than in NC. In experiment 4, the fertility rates for SP-based vs. GTLS-containing frozen semen of buffalo bull were 42.8 and 55.2%, respectively. The results for GTLS were significantly higher than SP. The fertility rates also differed significantly in the first and second batch of inseminations performed with SP or GTLS-based cryopreserved semen of buffalo bull. In conclusion, a number of bacterial species are isolated from bubaline semen. Bacterial and seminal quality measured by standard laboratory tests and field fertility trials indicate that GTLS is more suitable in extender for cryopreservation of buffalo bull spermatozoa.


Author(s):  
Saroj Rai ◽  
S. Tyagi ◽  
M. Kumar ◽  
M. Karunakaran ◽  
M. Mondal ◽  
...  

The study was conducted to understand sperm kinetics of Frieswal bull spermatozoa using Computer Assisted Semen Analyzer (CASA). Fifty bull ejaculates were collected from ten healthy bulls that were in routine semen collection. The semen samples were diluted in Tris buffer at a concentration of 25x106 spermatozoa/ ml for analysis. Rapidly moving spermatozoa represented the one with better velocity and progressiveness while spermatozoa with medium motility had low velocity with short distance travelled in spite of its ability to move in a straight line (straightness, STR >70 %). The slow moving cells had good head and flagella movement but they followed a circular path with straight line velocity (VSL mm/ sec), linearity (LIN %) and straightenss (STR %) of 10.91, 9.00 and 22.54, respectively. Results indicated that individual sperm cells tracked by CASA as rapid, medium and slow motile were highly variable (p>0.001). However, the sperm motility between bulls varied (p>0.05) only in lateral head displacement (ALH, mm) and beat cross frequency (BCF, Hz).


Sign in / Sign up

Export Citation Format

Share Document