Using Articulate Virtual Laboratories in Teaching Energy Conversion at the U.S. Naval Academy

1997 ◽  
Vol 26 (2) ◽  
pp. 127-136 ◽  
Author(s):  
C. Wu

The Mechanical Engineering Department at the United States Naval Academy is currently evaluating a new teaching method which implements the use of a computer software. Utilizing the thermodynamic based software CyclePad, Intelligent Computer Aided Instruction (ICAI) is incorporated in an advanced energy conversion course (EM443) for Mechanical Engineering students. The use of the CyclePad software enhances lectures and aids students in visualization and design.

GERAM ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 63-72
Author(s):  
Fauzul Etfita ◽  
Sri Wahyuni

Teaching materials are a set of tools or facilities that contain materials, methods and evaluations used by teachers or lecturers in learning. So far, the teaching materials released by several developers have rarely been in accordance with the needs of Mechanical Engineering students, where some of the teaching materials available still use general English. In this study, in order to compile an appropriate teaching material, researchers have conducted a needs analysis. Needs analysis is a fundamental aspect for English language lecturers for specific purposes (ESP) in identifying information or the main needs of students and investigating areas of student shortages. In line with this statement, this research is a case study design that aims to determine the needs of mechanical engineering students in learning English through Padlet at the Faculty of Engineering in the 2019-2020 academic year. The data in this study were collected from researcher observations, questionnaires and semi-structured interviews with 40 students and two English language lecturers in the Department of Mechanical Engineering. The results revealed that speaking and writing are the main focus of English skills in the Mechanical Engineering department and listening along with reading are the next English skills needed than others.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S758-S759
Author(s):  
Eugene Millar ◽  
Eric Laing ◽  
Adam Saperstein ◽  
Jitu Modi ◽  
Christopher Heaney ◽  
...  

Abstract Background University students, including those at military service academies, are at increased risk of acute respiratory infection (ARI), including SAR-CoV-2, due to crowded living conditions, frequent social interaction and other factors that facilitate pathogen transmission. Unlike many universities, the United States Naval Academy (USNA) continued in-person instruction in Fall 2020 in the midst of the COVID-19 pandemic. The Observational Seroepidemiologic Study of COVID-19 at the United States Naval Academy (TOSCANA,) a longitudinal cohort characterizes the burden and risk factors of SARS-CoV-2 in USNA midshipmen. Methods Midshipmen were enrolled August- October 2020. Participants were queried about their ARI risk factors, COVID-19 history, and recent receipt of medical care for any ARI at enrollment, in December 2020 and again in May 2021. Subjects were also asked to provide blood and saliva samples to assess their SARS-CoV-2 serostatus at the same three timepoints. A saliva sample was collected by a subset of subjects in February 2021. Presence of anti-SARS-CoV-2 serum IgG in dried blood spots and saliva was measured by multiplex magnetic microparticle-based immunoassays. Results 181 midshipmen consented to the study and completed the baseline survey (Table 1). 17 (17.5%) of the 97 subjects who submitted baseline blood sample were SARS-CoV-2 seropositive. Only 4 (24%) positive individuals reported having been tested for or diagnosed with COVID-19 prior to arrival at USNA. 121 participants completed the midyear survey, of whom 61 (50%) submitted a blood sample. 16 (26%) of the midyear specimens were SARS-CoV-2 positive. Of these, 3 were new infections. 73 subjects completed the May survey, and 63 (100%) of the submitted blood samples were positive. 83 subjects provided baseline saliva samples, and ~55 submitted saliva at each successive time point. 1 (5%) was positive at enrollment, 9 (17%) were positive at midyear and 47 (96%) were positive in May. Table 1. Key characteristics of TOSCANA participants Conclusion SAR-CoV-2 prevalence in a sample of USNA midshipmen was < 20% at enrollment. A small proportion of subjects seroconverted between the September and December visits. SARS-CoV-2 positivity rose in May, following a COVID-19 outbreak in February and COVID-19 vaccination efforts in March at USNA. Disclosures Jitu Modi, MD, GSK (Speaker’s Bureau)


Author(s):  
Kim A. Shollenberger

There has been a rapid increase over the past three decades in the use of computational fluid dynamics (CFD) analysis by industry as a tool to design and manufacture products. It is currently a vital part of the engineering process for many companies around the world, and utilized in nearly every manufacturing industry. Employers of engineering students who perform this type of analysis have expressed the need for students at the undergraduate or B.S. level to have some CFD experience. As a result, engineering programs in the United States have begun to respond to this need by developing new curriculum and by exposing students to the use of CFD for research. The level of incorporation and implementation of CFD into the undergraduate curriculum and research at institutions varies widely. The objective of this paper is to conduct a survey of the current use of CFD in the undergraduate curriculum within mechanical engineering departments in the United States. Twenty ABET accredited U.S. schools that offer a B.S. degree in mechanical engineering are investigated in this study that are a representative sample of engineering schools in the U.S. today in terms of admission standards, private versus public, predominate terminal degree, size, and geographic location. Topics investigated include if CFD classes are offered to undergraduates whether they are required or optional, when they are first introduced into the curriculum, number of credit hours dedicated to CFD, types of courses that include CFD, and whether commercial or in-house codes are utilized.


Author(s):  
Salim Azzouz ◽  
Guy Bernard

This project describes the collaboration of two instructors, one from the mechanical engineering department and one from the mathematics department with a group of mechanical engineering students to build and analyze a new type of transportation transmission. Current transmissions have torque limitations when working at various vehicle loading conditions. The ideal vehicle transmission is a continuously variable transmission that delivers optimum torque at any loading condition. The motivation for this research project is to design a new transmission that would increase the number of gear ratios using a chain element, and consequentially, increasing the number of available torques to achieve better overall vehicle performance. The new transmission consists of two planetary gears systems linked by a chain. It includes multiple inputs and outputs with the possibility of using one of the outputs to drive other engine components. The system is currently investigated for all possible gear ratios and usable torque configurations. The gear ratios are determined using Willis’s formula for planetary gear systems. All possible gear combinations are investigated and their gear ratios mathematically determined. A prototype was designed and built. It is being automatized, currently.


Author(s):  
Thomas C. Fu ◽  
Thomas T. O’Shea ◽  
Kyle A. Brucker ◽  
Carolyn Q. Judge ◽  
Christine M. Ikeda ◽  
...  

Numerical simulations of wedge impact experiments, undertaken by the Naval Surface Warfare Center, Carderock Division, NSWCCD, and more recently by the United States Naval Academy, USNA, Hydromechanics Laboratory, were performed using the computational fluid dynamics code Numerical Flow Analysis, NFA, to assess its capabilities in simulating the short duration hydrodynamic loading associated with free-surface impact. NSWCCD performed experiments using drop heights of 15.24 cm (6 in) and 25.4 cm (10 in), while the Naval Academy used drop heights of: 7.94, 12.7, 15.88, 25.4, 31.75, 38.1, and 50.8 cm (3.125, 5.0, 6.25, 10.0, 12.5, 15.0, and 20.0 in), measured from the keel of the wedge to the calm water surface. Simulations and comparisons were made at heights of 15.24 cm (6 in) and 25.4 cm (10 in) with the NSWCCD data, and 12.5 inches for the USNA data providing for a detailed examination of NFA’s ability to simulate and predict short duration hydrodynamic impacts.


2002 ◽  
Vol 760 ◽  
Author(s):  
Joseph F. Lomax ◽  
Debra K. Dillner ◽  
Melonie A. Teichert

ABSTRACTIn a general chemistry course, while the hands-on experience of the laboratory is important, the goals of the laboratory are not fulfilled until the calculations and analysis are complete. Quite often students are capable of following laboratory instructions and generating excellent data, only to fail in the data analysis, which rarely occurs in the confines of the laboratory or the presence of the instructor. All too often, students are unable to learn important information from the interpretation of experimental results and draw correct conclusions because they make calculational errors, which are most often discovered by the instructor in the grading process. There is an opportunity for distance learning to help bridge the gap between collection of data and its correct analysis. At the United States Naval Academy (USNA), we have developed a Web-based system where the students input their data and calculational results into a web form with immediate feedback. The students are then allowed to correct their errors and resubmit. This system has been in successful use for 5 years. A description of a typical experiment will be discussed along with an assessment of student and faculty satisfaction with the program.


Sign in / Sign up

Export Citation Format

Share Document