scholarly journals Some useful techniques for pointwise and local error estimates of the quantities of interest in the finite element approximation

2000 ◽  
Vol 42 ◽  
pp. 317 ◽  
Author(s):  
T. Cao ◽  
D. W. Kelly ◽  
M. Ainsworth
2020 ◽  
Vol 30 (05) ◽  
pp. 847-865
Author(s):  
Gabriel Barrenechea ◽  
Erik Burman ◽  
Johnny Guzmán

We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using [Formula: see text](div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the [Formula: see text]-norm of order [Formula: see text]. We also prove error estimates for the pressure error in the [Formula: see text]-norm.


2020 ◽  
Vol 20 (2) ◽  
pp. 361-378
Author(s):  
Tamal Pramanick ◽  
Rajen Kumar Sinha

AbstractThe purpose of this paper is to generalize known a priori error estimates of the composite finite element (CFE) approximations of elliptic problems in nonconvex polygonal domains to the time dependent parabolic problems. This is a new class of finite elements which was introduced by [W. Hackbusch and S. A. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. Math. 75 1997, 4, 447–472] and subsequently modified by [M. Rech, S. A. Sauter and A. Smolianski, Two-scale composite finite element method for Dirichlet problems on complicated domains, Numer. Math. 102 2006, 4, 681–708] for the approximations of stationery problems on complicated domains. The basic idea of the CFE procedure is to work with fewer degrees of freedom by allowing finite element mesh to resolve the domain boundaries and to preserve the asymptotic order convergence on coarse-scale mesh. We analyze both semidiscrete and fully discrete CFE methods for parabolic problems in two-dimensional nonconvex polygonal domains and derive error estimates of order {\mathcal{O}(H^{s}\widehat{\mathrm{Log}}{}^{\frac{s}{2}}(\frac{H}{h}))} and {\mathcal{O}(H^{2s}\widehat{\mathrm{Log}}{}^{s}(\frac{H}{h}))} in the {L^{\infty}(H^{1})}-norm and {L^{\infty}(L^{2})}-norm, respectively. Moreover, for homogeneous equations, error estimates are derived for nonsmooth initial data. Numerical results are presented to support the theoretical rates of convergence.


2018 ◽  
Vol 52 (1) ◽  
pp. 181-206 ◽  
Author(s):  
Yinnian He ◽  
Jun Zou

We study a finite element approximation of the initial-boundary value problem of the 3D incompressible magnetohydrodynamic (MHD) system under smooth domains and data. We first establish several important regularities anda prioriestimates for the velocity, pressure and magnetic field (u,p,B) of the MHD system under the assumption that ∇u∈L4(0,T;L2(Ω)3 × 3) and ∇ ×B∈L4(0,T;L2(Ω)3). Then we formulate a finite element approximation of the MHD flow. Finally, we derive the optimal error estimates of the discrete velocity and magnetic field in energy-norm and the discrete pressure inL2-norm, and the optimal error estimates of the discrete velocity and magnetic field inL2-norm by means of a novel negative-norm technique, without the help of the standard duality argument for the Navier-Stokes equations.


2017 ◽  
Vol 10 (2) ◽  
pp. 420-436
Author(s):  
Yunqing Huang ◽  
Liupeng Wang ◽  
Nianyu Yi

AbstractIn this paper, we study the role of mesh quality on the accuracy of linear finite element approximation. We derive a more detailed error estimate, which shows explicitly how the shape and size of elements, and symmetry structure of mesh effect on the error of numerical approximation. Two computable parameters Ge and Gv are given to depict the cell geometry property and symmetry structure of the mesh. In compare with the standard a priori error estimates, which only yield information on the asymptotic error behaviour in a global sense, our proposed error estimate considers the effect of local element geometry properties, and is thus more accurate. Under certain conditions, the traditional error estimates and supercovergence results can be derived from the proposed error estimate. Moreover, the estimators Ge and Gv are computable and thus can be used for predicting the variation of errors. Numerical tests are presented to illustrate the performance of the proposed parameters Ge and Gv.


Sign in / Sign up

Export Citation Format

Share Document