scholarly journals Artificial Intelligence for COVID-19: Rapid Review (Preprint)

2020 ◽  
Author(s):  
Jiayang Chen ◽  
Kay Choong See

BACKGROUND COVID-19 was first discovered in December 2019 and has since evolved into a pandemic. OBJECTIVE To address this global health crisis, artificial intelligence (AI) has been deployed at various levels of the health care system. However, AI has both potential benefits and limitations. We therefore conducted a review of AI applications for COVID-19. METHODS We performed an extensive search of the PubMed and EMBASE databases for COVID-19–related English-language studies published between December 1, 2019, and March 31, 2020. We supplemented the database search with reference list checks. A thematic analysis and narrative review of AI applications for COVID-19 was conducted. RESULTS In total, 11 papers were included for review. AI was applied to COVID-19 in four areas: diagnosis, public health, clinical decision making, and therapeutics. We identified several limitations including insufficient data, omission of multimodal methods of AI-based assessment, delay in realization of benefits, poor internal/external validation, inability to be used by laypersons, inability to be used in resource-poor settings, presence of ethical pitfalls, and presence of legal barriers. AI could potentially be explored in four other areas: surveillance, combination with big data, operation of other core clinical services, and management of patients with COVID-19. CONCLUSIONS In view of the continuing increase in the number of cases, and given that multiple waves of infections may occur, there is a need for effective methods to help control the COVID-19 pandemic. Despite its shortcomings, AI holds the potential to greatly augment existing human efforts, which may otherwise be overwhelmed by high patient numbers.

10.2196/21476 ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. e21476
Author(s):  
Jiayang Chen ◽  
Kay Choong See

Background COVID-19 was first discovered in December 2019 and has since evolved into a pandemic. Objective To address this global health crisis, artificial intelligence (AI) has been deployed at various levels of the health care system. However, AI has both potential benefits and limitations. We therefore conducted a review of AI applications for COVID-19. Methods We performed an extensive search of the PubMed and EMBASE databases for COVID-19–related English-language studies published between December 1, 2019, and March 31, 2020. We supplemented the database search with reference list checks. A thematic analysis and narrative review of AI applications for COVID-19 was conducted. Results In total, 11 papers were included for review. AI was applied to COVID-19 in four areas: diagnosis, public health, clinical decision making, and therapeutics. We identified several limitations including insufficient data, omission of multimodal methods of AI-based assessment, delay in realization of benefits, poor internal/external validation, inability to be used by laypersons, inability to be used in resource-poor settings, presence of ethical pitfalls, and presence of legal barriers. AI could potentially be explored in four other areas: surveillance, combination with big data, operation of other core clinical services, and management of patients with COVID-19. Conclusions In view of the continuing increase in the number of cases, and given that multiple waves of infections may occur, there is a need for effective methods to help control the COVID-19 pandemic. Despite its shortcomings, AI holds the potential to greatly augment existing human efforts, which may otherwise be overwhelmed by high patient numbers.


2020 ◽  
Author(s):  
Dennis Shung ◽  
Cynthia Tsay ◽  
Loren Laine ◽  
Prem Thomas ◽  
Caitlin Partridge ◽  
...  

Background and AimGuidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time within electronic health records (EHRs) would overcome a major impediment. This requires an automated mechanism to accurately identify (“phenotype”) patients with GIB at the time of presentation. The goal is to identify patients with acute GIB by developing and evaluating EHR-based phenotyping algorithms for emergency department (ED) patients.MethodsWe specified criteria using structured data elements to create rules for identifying patients, and also developed a natural-language-processing (NLP)-based algorithm for automated phenotyping of patients, tested them with tenfold cross-validation (n=7144) and external validation (n=2988), and compared them with the standard method for encoding patient conditions in the EHR, Systematized Nomenclature of Medicine (SNOMED). The gold standard for GIB diagnosis was independent dual manual review of medical records. The primary outcome was positive predictive value (PPV).ResultsA decision rule using GIB-specific terms from ED triage and from ED review-of-systems assessment performed better than SNOMED on internal validation (PPV=91% [90%-93%] vs. 74% [71%-76%], P<0.001) and external validation (PPV=85% [84%-87%] vs. 69% [67%-71%], P<0.001). The NLP algorithm (external validation PPV=80% [79-82%]) was not superior to the structured-datafields decision rule.ConclusionsAn automated decision rule employing GIB-specific triage and review-of-systems terms can be used to trigger EHR-based deployment of risk stratification models to guide clinical decision-making in real time for patients with acute GIB presenting to the ED.


2021 ◽  
Vol 28 (1) ◽  
pp. e100267
Author(s):  
Keerthi Harish ◽  
Ben Zhang ◽  
Peter Stella ◽  
Kevin Hauck ◽  
Marwa M Moussa ◽  
...  

ObjectivesPredictive studies play important roles in the development of models informing care for patients with COVID-19. Our concern is that studies producing ill-performing models may lead to inappropriate clinical decision-making. Thus, our objective is to summarise and characterise performance of prognostic models for COVID-19 on external data.MethodsWe performed a validation of parsimonious prognostic models for patients with COVID-19 from a literature search for published and preprint articles. Ten models meeting inclusion criteria were either (a) externally validated with our data against the model variables and weights or (b) rebuilt using original features if no weights were provided. Nine studies had internally or externally validated models on cohorts of between 18 and 320 inpatients with COVID-19. One model used cross-validation. Our external validation cohort consisted of 4444 patients with COVID-19 hospitalised between 1 March and 27 May 2020.ResultsMost models failed validation when applied to our institution’s data. Included studies reported an average validation area under the receiver–operator curve (AUROC) of 0.828. Models applied with reported features averaged an AUROC of 0.66 when validated on our data. Models rebuilt with the same features averaged an AUROC of 0.755 when validated on our data. In both cases, models did not validate against their studies’ reported AUROC values.DiscussionPublished and preprint prognostic models for patients infected with COVID-19 performed substantially worse when applied to external data. Further inquiry is required to elucidate mechanisms underlying performance deviations.ConclusionsClinicians should employ caution when applying models for clinical prediction without careful validation on local data.


2021 ◽  
Author(s):  
Gregory M Miller ◽  
Austin J Ellis ◽  
Rangaprasad Sarangarajan ◽  
Amay Parikh ◽  
Leonardo O Rodrigues ◽  
...  

Objective: The COVID-19 pandemic generated a massive amount of clinical data, which potentially holds yet undiscovered answers related to COVID-19 morbidity, mortality, long term effects, and therapeutic solutions. The objective of this study was to generate insights on COVID-19 mortality-associated factors and identify potential new therapeutic options for COVID-19 patients by employing artificial intelligence analytics on real-world data. Materials and Methods: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within Interrogative Biology® platform was used for network learning, inference causality and hypothesis generation to analyze 16,277 PCR positive patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated causal networks that enabled unbiased identification of significant predictors of mortality for specific COVID-19 patient populations. These findings were validated by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results: We found that in the SARS-CoV-2 PCR positive patient cohort, early use of the antiemetic agent ondansetron was associated with increased survival in mechanically ventilated patients. Conclusions: The results demonstrate how real world COVID-19 focused data analysis using artificial intelligence can generate valid insights that could possibly support clinical decision-making and minimize the future loss of lives and resources.


2011 ◽  
pp. 1017-1029
Author(s):  
William Claster ◽  
Nader Ghotbi ◽  
Subana Shanmuganathan

There is a treasure trove of hidden information in the textual and narrative data of medical records that can be deciphered by text-mining techniques. The information provided by these methods can provide a basis for medical artificial intelligence and help support or improve clinical decision making by medical doctors. In this paper we extend previous work in an effort to extract meaningful information from free text medical records. We discuss a methodology for the analysis of medical records using some statistical analysis and the Kohonen Self-Organizing Map (SOM). The medical data derive from about 700 pediatric patients’ radiology department records where CT (Computed Tomography) scanning was used as part of a diagnostic exploration. The patients underwent CT scanning (single and multiple) throughout a one-year period in 2004 at the Nagasaki University Medical Hospital. Our approach led to a model based on SOM clusters and statistical analysis which may suggest a strategy for limiting CT scan requests. This is important because radiation at levels ordinarily used for CT scanning may pose significant health risks especially to children.


CJEM ◽  
2020 ◽  
Vol 22 (S1) ◽  
pp. S90-S90
Author(s):  
A. Kirubarajan ◽  
A. Taher ◽  
S. Khan ◽  
S. Masood

Introduction: The study of artificial intelligence (AI) in medicine has become increasingly popular over the last decade. The emergency department (ED) is uniquely situated to benefit from AI due to its power of diagnostic prediction, and its ability to continuously improve with time. However, there is a lack of understanding of the breadth and scope of AI applications in emergency medicine, and evidence supporting its use. Methods: Our scoping review was completed according to PRISMA-ScR guidelines and was published a priori on Open Science Forum. We systematically searched databases (Medline-OVID, EMBASE, CINAHL, and IEEE) for AI interventions relevant to the ED. Study selection and data extraction was performed independently by two investigators. We categorized studies based on type of AI model used, location of intervention, clinical focus, intervention sub-type, and type of comparator. Results: Of the 1483 original database citations, a total of 181 studies were included in the scoping review. Inter-rater reliability for study screening for titles and abstracts was 89.1%, and for full-text review was 77.8%. Overall, we found that 44 (24.3%) studies utilized supervised learning, 63 (34.8%) studies evaluated unsupervised learning, and 13 (7.2%) studies utilized natural language processing. 17 (9.4%) studies were conducted in the pre-hospital environment, with the remainder occurring either in the ED or the trauma bay. The majority of interventions centered around prediction (n = 73, 40.3%). 48 studies (25.5%) analyzed AI interventions for diagnosis. 23 (12.7%) interventions focused on diagnostic imaging. 89 (49.2%) studies did not have a comparator to their AI intervention. 63 (34.8%) studies used statistical models as a comparator, 19 (10.5%) of which were clinical decision making tools. 15 (8.3%) studies used humans as comparators, with 12 of the 15 (80%) studies showing superiority in favour of the AI intervention when compared to a human. Conclusion: AI-related research is rapidly increasing in emergency medicine. AI interventions are heterogeneous in both purpose and design, but primarily focus on predictive modeling. Most studies do not involve a human comparator and lack information on patient-oriented outcomes. While some studies show promising results for AI-based interventions, there remains uncertainty regarding their superiority over standard practice, and further research is needed prior to clinical implementation.


BMJ Open ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. e033374 ◽  
Author(s):  
Daniela Balzi ◽  
Giulia Carreras ◽  
Francesco Tonarelli ◽  
Luca Degli Esposti ◽  
Paola Michelozzi ◽  
...  

ObjectiveIdentification of older patients at risk, among those accessing the emergency department (ED), may support clinical decision-making. To this purpose, we developed and validated the Dynamic Silver Code (DSC), a score based on real-time linkage of administrative data.Design and settingThe ‘Silver Code National Project (SCNP)’, a non-concurrent cohort study, was used for retrospective development and internal validation of the DSC. External validation was obtained in the ‘Anziani in DEA (AIDEA)’ concurrent cohort study, where the DSC was generated by the software routinely used in the ED.ParticipantsThe SCNP contained 281 321 records of 180 079 residents aged 75+ years from Tuscany and Lazio, Italy, admitted via the ED to Internal Medicine or Geriatrics units. The AIDEA study enrolled 4425 subjects aged 75+ years (5217 records) accessing two EDs in the area of Florence, Italy.InterventionsNone.Outcome measuresPrimary outcome: 1-year mortality. Secondary outcomes: 7 and 30-day mortality and 1-year recurrent ED visits.ResultsAdvancing age, male gender, previous hospital admission, discharge diagnosis, time from discharge and polypharmacy predicted 1-year mortality and contributed to the DSC in the development subsample of the SCNP cohort. Based on score quartiles, participants were classified into low, medium, high and very high-risk classes. In the SCNP validation sample, mortality increased progressively from 144 to 367 per 1000 person-years, across DSC classes, with HR (95% CI) of 1.92 (1.85 to 1.99), 2.71 (2.61 to 2.81) and 5.40 (5.21 to 5.59) in class II, III and IV, respectively versus class I (p<0.001). Findings were similar in AIDEA, where the DSC predicted also recurrent ED visits in 1 year. In both databases, the DSC predicted 7 and 30-day mortality.ConclusionsThe DSC, based on administrative data available in real time, predicts prognosis of older patients and might improve their management in the ED.


2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


Sign in / Sign up

Export Citation Format

Share Document