Validity, Reliability and Sensitivity to Change of Three Consumer-grade Activity Trackers in Controlled and Free-living Conditions among Older Adults (Preprint)

2021 ◽  
Author(s):  
Kaja Kastelic ◽  
Marina Dobnik ◽  
Stefan Loefler ◽  
Christian Hofer ◽  
Nejc Šarabon

BACKGROUND Wrist worn consumer-grade activity trackers are popular devices, developed mainly for personal use, but with the potential to be used also for clinical and research purposes. OBJECTIVE The objective of this study was to explore the validity, reliability and sensitivity to change of movement behaviours metrics from three popular activity trackers (POLAR Vantage M, Garmin Vivosport and Garmin Vivoactive 4s) in controlled and free-living conditions when worn by older adults. METHODS Participants (n = 28; 74 ± 5 years) underwent a videotaped laboratory protocol while wearing all three activity trackers. On a separate occasion, participants wore one (randomly assigned) activity tracker and a research grade physical activity monitor ActiGraph wGT3X-BT simultaneously for six consecutive days for comparisons. RESULTS Both Garmin activity trackers showed excellent performance for step counts, with mean absolute percentage error (MAPE) below 20 % and intraclass correlation coefficient (ICC2,1) above 0.90 (P < .05), while Polar Vantage M substantially over counted steps (MAPE = 84 % and ICC2,1 = 0.37 for free-living conditions). MAPE for sleep time was within 10 % for all the trackers tested, while far beyond 20 % for all the physical activity and calories burned outputs. Both Garmin trackers showed fair agreement (ICC2,1 = 0.58–0.55) for measuring calories burned when compared with ActiGraph. CONCLUSIONS Garmin Vivoactive 4s showed overall best performance, especially for measuring steps and sleep time in healthy older adults. Minimal detectible change was consistently lower for an average day measures than for a single day measure, but still relatively high. The results provided in this study could be used to guide choice on activity trackers aiming for different purposes – individual use/care, longitudinal monitoring or in clinical trial setting.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6245
Author(s):  
Kaja Kastelic ◽  
Marina Dobnik ◽  
Stefan Löfler ◽  
Christian Hofer ◽  
Nejc Šarabon

Wrist-worn consumer-grade activity trackers are popular devices, developed mainly for personal use. This study aimed to explore the validity, reliability and sensitivity to change of movement behaviors metrics from three activity trackers (Polar Vantage M, Garmin Vivoactive 4s and Garmin Vivosport) in controlled and free-living conditions when worn by older adults. Participants (n = 28; 74 ± 5 years) underwent a videotaped laboratory protocol while wearing all three trackers. On a separate occasion, participants (n = 17 for each of the trackers) wore one (randomly assigned) tracker and a research-grade activity monitor ActiGraph wGT3X-BT simultaneously for six consecutive days. Both Garmin trackers showed excellent performance for step counts, with a mean absolute percentage error (MAPE) below 20% and intraclass correlation coefficient (ICC2,1) above 0.90 (p < 0.05). The MAPE for sleep time was within 10% for all the trackers tested, while it was far beyond 20% for all other movement behaviors metrics. The results suggested that all three trackers could be used for measuring sleep time with a high level of accuracy, and both Garmin trackers could also be used for step counts. All other output metrics should be used with caution. The results provided in this study could be used to guide choice on activity trackers aiming for different purposes—individual use, longitudinal monitoring or in clinical trial setting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amine Guediri ◽  
Louise Robin ◽  
Justine Lacroix ◽  
Timothee Aubourg ◽  
Nicolas Vuillerme ◽  
...  

The World Health Organization has presented their recommendations for energy expenditure to improve public health. Activity trackers do represent a modern solution for measuring physical activity, particularly in terms of steps/day and energy expended in physical activity (active energy expenditure). According to the manufacturer's instructions, these activity trackers can be placed on different body locations, mostly at the wrist and the hip, in an undifferentiated manner. The objective of this study was to compare the absolute error rate of active energy expenditure measured by a wrist-worn and hip-worn ActiGraph GT3X+ over a 24-h period in free-living conditions in young and older adults. Over the period of a 24-h period, 22 young adults and 22 older adults were asked to wear two ActiGraph GT3X+ at two different body locations recommended by the manufacturer, namely one around the wrist and one above the hip. Freedson algorithm was applied for data analysis. For both groups, the absolute error rate tended to decrease from 1,252 to 43% for older adults and from 408 to 46% for young participants with higher energy expenditure. Interestingly, for both young and older adults, the wrist-worn ActiGraph provided a significantly higher values of active energy expenditure (943 ± 264 cal/min) than the hip-worn (288 ± 181 cal/min). Taken together, these results suggest that caution is needed when using active energy expenditure as an activity tracker-based metric to quantify physical activity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gergely Ráthonyi ◽  
Viktor Takács ◽  
Róbert Szilágyi ◽  
Éva Bácsné Bába ◽  
Anetta Müller ◽  
...  

Inadequate physical activity is currently one of the leading risk factors for mortality worldwide. University students are a high-risk group in terms of rates of obesity and lack of physical activity. In recent years, activity trackers have become increasingly popular for measuring physical activity. The aim of the present study is to examine whether university students in Hungary meet the health recommendations (10,000 steps/day) for physical activity and investigate the impact of different variables (semester-exam period, days-weekdays, days, months, sex) on the level of physical activity in free-living conditions for 3 months period. In free-living conditions, 57 healthy university students (male: 25 female: 32 mean age: 19.50 SD = 1.58) wore MiBand 1S activity tracker for 3 months. Independent sample t-tests were used to explore differences between sexes. A One-way analysis of variance (ANOVA) was used to explore differences in measures among different grouping variables and step count. A Two-way ANOVA was conducted to test for differences in the number of steps by days of the week, months, seasons and for sex differences. Tukey HSD post-hoc tests were used to examine significant differences. Students in the study achieved 10,000 steps per day on 17% of days (minimum: 0%; maximum: 76.5%; median: 11.1%). Unfortunately, 70% of the participants did not comply the 10,000 steps at least 80% of the days studied. No statistical difference were found between sexes. However, significant differences were found between BMI categories (underweight &lt;18.50 kg/m2; normal range 18.50–24.99 kg/m2; overweight: 25.00–29.99 kg/m2 obese &gt; 30 kg/m2, the number of steps in the overweight category was significantly lower (F = 72.073, p &lt; 0.001). The average daily steps were significantly higher in autumn (t = 11.457, p &lt; 0.001) than in winter. During exam period average steps/day were significantly lower than during fall semester (t = 13.696, p &lt; 0.001). On weekdays, steps were significantly higher than on weekends (F = 14.017, p &lt; 0.001), and even within this, the greatest physical activity can be done by the middle of the week. Our data suggest that university students may be priority groups for future physical activity interventions. Commercial activity trackers provide huge amount of data for relatively low cost therefore it has the potential to objectively analyze physical activity and plan interventions.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5344
Author(s):  
Wouter Bijnens ◽  
Jos Aarts ◽  
An Stevens ◽  
Darcy Ummels ◽  
Kenneth Meijer

Due to a lack of transparency in both algorithm and validation methodology, it is difficult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (±10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.


2013 ◽  
Vol 38 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Pedro B. Júdice ◽  
João P. Magalhães ◽  
Diana A. Santos ◽  
Catarina N. Matias ◽  
Ana Isabel Carita ◽  
...  

Research on the effect of caffeine on energy expenditure (EE), physical activity (PA), and total sleep time (TST) during free-living conditions using objective measures is scarce. We aimed to determine the impact of a moderate dose of caffeine on TST, resting EE (REE), physical activity EE (PAEE), total EE (TEE), and daily time spent in sedentary, light, moderate, and vigorous intensity activities in a 4-day period and the acute effects on heart rate (HR) and EE in physically active males. Using a double-blind crossover trial (ClinicalTrials.gov ID: NCT01477294) with two conditions (4 days each with 3-day washout) randomly ordered as caffeine (5 mg/kg of body mass/day) and placebo (maltodextrin) administered twice per day (2.5 mg/kg), 30 nonsmoker males, low-caffeine users (<100 mg/day), aged 20–39, were followed. Body composition was assessed by dual-energy X-ray absorptiometry. PA was assessed by accelerometry, while a combined HR and movement sensor estimated EE and HR on the second hour after the first administration dose. REE was assessed by indirect calorimetry, and PAEE was calculated as [TEE − (REE + 0.1TEE)]. TST and daily food records were obtained. Repeated measures ANOVA and ANCOVA were used. After a 4-day period, adjusting for fat-free mass, PAEE, and REE, TST was reduced (p = 0.022) under caffeine intake, while no differences were found between conditions for REE, PAEE, TEE, and PA patterns. Also, no acute effects on HR and EE were found between conditions. Though a large individual variability was observed, our findings revealed no acute or long-term effects of caffeine on EE and PA but decreased TST during free-living conditions in healthy males.


10.2196/16674 ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. e16674 ◽  
Author(s):  
Laurent Degroote ◽  
Gilles Hamerlinck ◽  
Karolien Poels ◽  
Carol Maher ◽  
Geert Crombez ◽  
...  

Background Wearable trackers for monitoring physical activity (PA) and total sleep time (TST) are increasingly popular. These devices are used not only by consumers to monitor their behavior but also by researchers to track the behavior of large samples and by health professionals to implement interventions aimed at health promotion and to remotely monitor patients. However, high costs and accuracy concerns may be barriers to widespread adoption. Objective This study aimed to investigate the concurrent validity of 6 low-cost activity trackers for measuring steps, moderate-to-vigorous physical activity (MVPA), and TST: Geonaut On Coach, iWown i5 Plus, MyKronoz ZeFit4, Nokia GO, VeryFit 2.0, and Xiaomi MiBand 2. Methods A free-living protocol was used in which 20 adults engaged in their usual daily activities and sleep. For 3 days and 3 nights, they simultaneously wore a low-cost tracker and a high-cost tracker (Fitbit Charge HR) on the nondominant wrist. Participants wore an ActiGraph GT3X+ accelerometer on the hip at daytime and a BodyMedia SenseWear device on the nondominant upper arm at nighttime. Validity was assessed by comparing each tracker with the ActiGraph GT3X+ and BodyMedia SenseWear using mean absolute percentage error scores, correlations, and Bland-Altman plots in IBM SPSS 24.0. Results Large variations were shown between trackers. Low-cost trackers showed moderate-to-strong correlations (Spearman r=0.53-0.91) and low-to-good agreement (intraclass correlation coefficient [ICC]=0.51-0.90) for measuring steps. Weak-to-moderate correlations (Spearman r=0.24-0.56) and low agreement (ICC=0.18-0.56) were shown for measuring MVPA. For measuring TST, the low-cost trackers showed weak-to-strong correlations (Spearman r=0.04-0.73) and low agreement (ICC=0.05-0.52). The Bland-Altman plot revealed a variation between overcounting and undercounting for measuring steps, MVPA, and TST, depending on the used low-cost tracker. None of the trackers, including Fitbit (a high-cost tracker), showed high validity to measure MVPA. Conclusions This study was the first to examine the concurrent validity of low-cost trackers. Validity was strongest for the measurement of steps; there was evidence of validity for measurement of sleep in some trackers, and validity for measurement of MVPA time was weak throughout all devices. Validity ranged between devices, with Xiaomi having the highest validity for measurement of steps and VeryFit performing relatively strong across both sleep and steps domains. Low-cost trackers hold promise for monitoring and measurement of movement and sleep behaviors, both for consumers and researchers.


Author(s):  
Laurent Degroote ◽  
Gilles Hamerlinck ◽  
Karolien Poels ◽  
Carol Maher ◽  
Geert Crombez ◽  
...  

BACKGROUND Wearable trackers for monitoring physical activity (PA) and total sleep time (TST) are increasingly popular. These devices are used not only by consumers to monitor their behavior but also by researchers to track the behavior of large samples and by health professionals to implement interventions aimed at health promotion and to remotely monitor patients. However, high costs and accuracy concerns may be barriers to widespread adoption. OBJECTIVE This study aimed to investigate the concurrent validity of 6 low-cost activity trackers for measuring steps, moderate-to-vigorous physical activity (MVPA), and TST: Geonaut On Coach, iWown i5 Plus, MyKronoz ZeFit4, Nokia GO, VeryFit 2.0, and Xiaomi MiBand 2. METHODS A free-living protocol was used in which 20 adults engaged in their usual daily activities and sleep. For 3 days and 3 nights, they simultaneously wore a low-cost tracker and a high-cost tracker (Fitbit Charge HR) on the nondominant wrist. Participants wore an ActiGraph GT3X+ accelerometer on the hip at daytime and a BodyMedia SenseWear device on the nondominant upper arm at nighttime. Validity was assessed by comparing each tracker with the ActiGraph GT3X+ and BodyMedia SenseWear using mean absolute percentage error scores, correlations, and Bland-Altman plots in IBM SPSS 24.0. RESULTS Large variations were shown between trackers. Low-cost trackers showed moderate-to-strong correlations (Spearman <i>r</i>=0.53-0.91) and low-to-good agreement (intraclass correlation coefficient [ICC]=0.51-0.90) for measuring steps. Weak-to-moderate correlations (Spearman <i>r</i>=0.24-0.56) and low agreement (ICC=0.18-0.56) were shown for measuring MVPA. For measuring TST, the low-cost trackers showed weak-to-strong correlations (Spearman <i>r</i>=0.04-0.73) and low agreement (ICC=0.05-0.52). The Bland-Altman plot revealed a variation between overcounting and undercounting for measuring steps, MVPA, and TST, depending on the used low-cost tracker. None of the trackers, including Fitbit (a high-cost tracker), showed high validity to measure MVPA. CONCLUSIONS This study was the first to examine the concurrent validity of low-cost trackers. Validity was strongest for the measurement of steps; there was evidence of validity for measurement of sleep in some trackers, and validity for measurement of MVPA time was weak throughout all devices. Validity ranged between devices, with Xiaomi having the highest validity for measurement of steps and VeryFit performing relatively strong across both sleep and steps domains. Low-cost trackers hold promise for monitoring and measurement of movement and sleep behaviors, both for consumers and researchers.


2020 ◽  
Vol 3 (2) ◽  
pp. 100-109
Author(s):  
Christopher P. Connolly ◽  
Jordana Dahmen ◽  
Robert D. Catena ◽  
Nigel Campbell ◽  
Alexander H.K. Montoye

Purpose: We aimed to determine the step-count validity of commonly used physical activity monitors for pregnancy overground walking and during free-living conditions. Methods: Participants (n = 39, 12–38 weeks gestational age) completed six 100-step overground walking trials (three self-selected “normal pace”, three “brisk pace”) while wearing five physical activity monitors: Omron HJ-720 (OM), New Lifestyles 2000 (NL), Fitbit Flex (FF), ActiGraph Link (AG), and Modus StepWatch (SW). For each walking trial, monitor-recorded steps and criterion-measured steps were assessed. Participants also wore all activity monitors for an extended free-living period (72 hours), with the SW used as the criterion device. Mean absolute percent error (MAPE) was calculated for overground walking and free-living protocols and compared across monitors. Results: For overground walking, the OM, NL, and SW performed well (<5% MAPE) for normal and brisk pace walking trials, and also when trials were analyzed by actual speeds. The AG and FF had significantly greater MAPE for overground walking trials (11.9–14.7%). Trimester did affect device accuracy to some degree for the AG, FF, and SW, with error being lower in the third trimester compared to the second. For the free-living period, the OM, NL, AG, and FF significantly underestimated (>32% MAPE) actual steps taken per day as measured by the criterion SW (M [SD] = 9,350 [3,910]). MAPE for the OM was particularly high (45.3%). Conclusion: The OM, NL, and SW monitors are valid measures for overground step-counting during pregnancy walking. However, the OM and NL significantly underestimate steps by second and third trimester pregnant women in free-living conditions.


Sign in / Sign up

Export Citation Format

Share Document