scholarly journals Surveying the Manifold Divergence of an Entire Protein Class for Statistical Clues to Underlying Biochemical Mechanisms

Author(s):  
Andrew F. Neuwald

Certain residues have no known function yet are co-conserved across distantly related protein families and diverse organisms, suggesting that they perform critical roles associated with as-yet-unidentified molecular properties and mechanisms. This raises the question of how to obtain additional clues regarding these mysterious biochemical phenomena with a view to formulating experimentally testable hypotheses. One approach is to access the implicit biochemical information encoded within the vast amount of genomic sequence data now becoming available. Here, a new Gibbs sampling strategy is formulated and implemented that can partition hundreds of thousands of sequences within a major protein class into multiple, functionally-divergent categories based on those pattern residues that best discriminate between categories. The sampler precisely defines the partition and pattern for each category by explicitly modeling unrelated, non-functional and related-yet-divergent proteins that would otherwise obscure the analysis. To aid biological interpretation, auxiliary routines can characterize pattern residues within available crystal structures and identify those structures most likely to shed light on the roles of pattern residues. This approach can be used to define and annotate automatically subgroup-specific conserved domain profiles based on statistically-rigorous empirical criteria rather than on the subjective and labor-intensive process of manual curation. Incorporating such profiles into domain database search sites (such as the NCBI BLAST site) will provide biologists with previously inaccessible molecular information useful for hypothesis generation and experimental design. Analyses of P-loop GTPases and of AAA+ ATPases illustrate the sampler’s ability to obtain such information.

2002 ◽  
Vol 3 (2) ◽  
pp. 132-136 ◽  
Author(s):  
Pankaj Jaiswal ◽  
Doreen Ware ◽  
Junjian Ni ◽  
Kuan Chang ◽  
Wei Zhao ◽  
...  

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.


2020 ◽  
Vol 15 ◽  
Author(s):  
Affan Alim ◽  
Abdul Rafay ◽  
Imran Naseem

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process which may cause the rupture in the internal cells and tissues. AFP’s have attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, we propose to use machine learning-based algorithms Principal Component Analysis (PCA) followed by Gradient Boosting (GB) for antifreeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments composition of amino acid and dipeptide are used. PCA, in particular, is proposed to dimension reduction and high variance retaining of data which is followed by an ensemble method named gradient boosting for modelling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1212
Author(s):  
J. Spencer Johnston ◽  
Carl E. Hjelmen

Next-generation sequencing provides a nearly complete genomic sequence for model and non-model species alike; however, this wealth of sequence data includes no road map [...]


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 316-324 ◽  
Author(s):  
Jongsik Chun ◽  
Fred A. Rainey

The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA–DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12 000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11 000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.


2013 ◽  
Vol 5 (12) ◽  
pp. 2410-2419 ◽  
Author(s):  
Adam D. Leaché ◽  
Rebecca B. Harris ◽  
Max E. Maliska ◽  
Charles W. Linkem

2021 ◽  
Vol 16 ◽  
Author(s):  
Jinghao Peng ◽  
Jiajie Peng ◽  
Haiyin Piao ◽  
Zhang Luo ◽  
Kelin Xia ◽  
...  

Background: The open and accessible regions of the chromosome are more likely to be bound by transcription factors which are important for nuclear processes and biological functions. Studying the change of chromosome flexibility can help to discover and analyze disease markers and improve the efficiency of clinical diagnosis. Current methods for predicting chromosome flexibility based on Hi-C data include the flexibility-rigidity index (FRI) and the Gaussian network model (GNM), which have been proposed to characterize chromosome flexibility. However, these methods require the chromosome structure data based on 3D biological experiments, which is time-consuming and expensive. Objective: Generally, the folding and curling of the double helix sequence of DNA have a great impact on chromosome flexibility and function. Motivated by the success of genomic sequence analysis in biomolecular function analysis, we hope to propose a method to predict chromosome flexibility only based on genomic sequence data. Method: We propose a new method (named "DeepCFP") using deep learning models to predict chromosome flexibility based on only genomic sequence features. The model has been tested in the GM12878 cell line. Results: The maximum accuracy of our model has reached 91%. The performance of DeepCFP is close to FRI and GNM. Conclusion: The DeepCFP can achieve high performance only based on genomic sequence.


2016 ◽  
Vol 1 ◽  
pp. 4 ◽  
Author(s):  
Sarah Auburn ◽  
Ulrike Böhme ◽  
Sascha Steinbiss ◽  
Hidayat Trimarsanto ◽  
Jessica Hostetler ◽  
...  

Plasmodium vivax is now the predominant cause of malaria in the Asia-Pacific, South America and Horn of Africa. Laboratory studies of this species are constrained by the inability to maintain the parasite in continuous ex vivo culture, but genomic approaches provide an alternative and complementary avenue to investigate the parasite’s biology and epidemiology. To date, molecular studies of P. vivax have relied on the Salvador-I reference genome sequence, derived from a monkey-adapted strain from South America. However, the Salvador-I reference remains highly fragmented with over 2500 unassembled scaffolds.  Using high-depth Illumina sequence data, we assembled and annotated a new reference sequence, PvP01, sourced directly from a patient from Papua Indonesia. Draft assemblies of isolates from China (PvC01) and Thailand (PvT01) were also prepared for comparative purposes. The quality of the PvP01 assembly is improved greatly over Salvador-I, with fragmentation reduced to 226 scaffolds. Detailed manual curation has ensured highly comprehensive annotation, with functions attributed to 58% core genes in PvP01 versus 38% in Salvador-I. The assemblies of PvP01, PvC01 and PvT01 are larger than that of Salvador-I (28-30 versus 27 Mb), owing to improved assembly of the subtelomeres.  An extensive repertoire of over 1200 Plasmodium interspersed repeat (pir) genes were identified in PvP01 compared to 346 in Salvador-I, suggesting a vital role in parasite survival or development. The manually curated PvP01 reference and PvC01 and PvT01 draft assemblies are important new resources to study vivax malaria. PvP01 is maintained at GeneDB and ongoing curation will ensure continual improvements in assembly and annotation quality.


2019 ◽  
Author(s):  
◽  
Sarah Unruh

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Phylogenetic trees show us how organisms are related and provide frameworks for studying and testing evolutionary hypotheses. To better understand the evolution of orchids and their mycorrhizal fungi, I used high-throughput sequencing data and bioinformatic analyses, to build phylogenetic hypotheses. In Chapter 2, I used transcriptome sequences to both build a phylogeny of the slipper orchid genera and to confirm the placement of a polyploidy event at the base of the orchid family. Polyploidy is hypothesized to be a strong driver of evolution and a source of unique traits so confirming this event leads us closer to explaining extant orchid diversity. The list of orthologous genes generated from this study will provide a less expensive and more powerful method for researchers examining the evolutionary relationships in Orchidaceae. In Chapter 3, I generated genomic sequence data for 32 fungal isolates that were collected from orchids across North America. I inferred the first multi-locus nuclear phylogenetic tree for these fungal clades. The phylogenetic structure of these fungi will improve the taxonomy of these clades by providing evidence for new species and for revising problematic species designations. A robust taxonomy is necessary for studying the role of fungi in the orchid mycorrhizal symbiosis. In chapter 4 I summarize my work and outline the future directions of my lab at Illinois College including addressing the remaining aims of my Community Sequencing Proposal with the Joint Genome Institute by analyzing the 15 fungal reference genomes I generated during my PhD. Together these chapters are the start of a life-long research project into the evolution and function of the orchid/fungal symbiosis.


Sign in / Sign up

Export Citation Format

Share Document