Comparative Study on Drying of Selected Marine Products: Bombay Duck (Herpodon nehereus) and Prawn (Penaeus indicus)

2011 ◽  
Vol 7 (4) ◽  
Author(s):  
Ganesh Lotanrao Visavale ◽  
Parag P Sutar ◽  
Bhaskar Narayan Thorat

A study on drying of two types of fish, viz., Bombay duck and Prawn, using the open sun, a solar cabinet, hot air and freeze drying was carried out. The fish were dried to 5–6% moisture content. The drying rates were calculated and drying data were fitted to the Page model, and on the basis of R2 and RMSE values it was found that the Page model describes satisfactorily the drying behavior of Bombay duck and Prawn. Also, effective moisture diffusivity values were calculated during fish drying by different methods. The values of the average effective moisture diffusivity of Bombay duck and Prawn were in the range of 1.01 × 10-9 to 1.51 × 10-9 m2 s-1and 0.21 × 10-9 to 0.31 × 10-9 m2 s-1, respectively. Freeze drying was found to provide the best quality of dehydrated product, which was as expected. Solar cabinet drying was found to be a low-energy intensive process compared to freeze and hot air drying, resulting in a dehydrated product with acceptable quality.

2019 ◽  
Vol 62 (4) ◽  
pp. 919-928 ◽  
Author(s):  
Ying Ming Chew ◽  
V. An-Erl King

Abstract. Microwave drying (MD) of pitaya peel was performed at 75, 225, 375, 525, and 750 W. The drying effects on the effective moisture diffusivity (De), total polyphenol content (TPC), betalain content, DPPH scavenging ability, and rehydration abilities of pitaya peel were examined. The data were compared with hot-air drying (HD) at 100°C for 4 h and freeze-drying (FD) for 24 h. The results showed that the MD kinetics of pitaya peel fit Fick’s law and the Arrhenius equation with an activation energy (Ea) of 34.08 W g-1. The De values of MD, which ranged from 2.35E-07 m2 s-1 (at 75 W) to 5.56E-06 m2 s-1 (at 750 W), indicated that the effectiveness of MD was appreciably higher than that of HD (2.44E-08 m2 s-1) and FD (4.43E-09 m2 s-1). Although MD resulted in decreased betacyanin (9.31 mg L-1 extract) and betaxanthin (6.58 mg L-1 extract) contents, the DPPH inhibition of pitaya peel remained at 75% due to an increase in TPC (115 mg GAE per 100 FW). MD of pitaya peel can also provide higher rehydration ability than HD and was comparable to FD. This study concludes that MD of pitaya peel was highly effective while maintaining high levels of TPC and DPPH inhibition. Keywords: Arrhenius equation, Effective moisture diffusivity, Fick’s law, Microwave drying, Pitaya peel.


2016 ◽  
Vol 12 (5) ◽  
pp. 481-489 ◽  
Author(s):  
Daniel I. Onwude ◽  
Norhashila Hashim ◽  
Rimfiel B. Janius ◽  
Nazmi Nawi ◽  
Khalina Abdan

Abstract This study seeks to investigate the effects of temperature (50, 60, 70 and 80 °C) and material thickness (3, 5 and 7 mm), on the drying characteristics of pumpkin (Cucurbita moschata). Experimental data were used to estimate the effective moisture diffusivities and activation energy of pumpkin by using solutions of Fick’s second law of diffusion or its simplified form. The calculated value of moisture diffusivity with and without shrinkage effect varied from a minimum of 1.942 × 10–8 m2/s to a maximum of 9.196 × 10–8 m2/s, while that of activation energy varied from 5.02158 to 32.14542 kJ/mol with temperature ranging from 50 to 80 °C and slice thickness of 3 to 7 mm at constant air velocity of 1.16 m/s, respectively. The results indicated that with increasing temperature, and reduction of slice thickness, the drying time was reduced by more than 30 %. The effective moisture diffusivity increased with an increase in drying temperature with or without shrinkage effect. An increase in the activation energy was observed due to an increase in the slice thickness of the pumpkin samples.


Author(s):  
Samuel Enahoro Agarry

The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models) were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2) and the root mean square error (RMSE). The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.


Author(s):  
Chang Chen ◽  
Chandrasekar Venkitasamy ◽  
Weipeng Zhang ◽  
Ragab Khir ◽  
Shrinivasa Upadhyaya ◽  
...  

2016 ◽  
Vol 62 (No. 1) ◽  
pp. 15-23 ◽  
Author(s):  
H. Samimi Akhijani ◽  
A. Arabhosseini ◽  
M.H. Kianmehr

Mathematical modelling and effective moisture diffusivity of tomato (Lycopersicon esculentum) was studied during hot air solar drying. An experimental solar dryer with a swivel collector was used for experiments. The collector followed the solar radiation using a precious sensor. Drying experiments were performed in a thin layer hot air drying at slice thicknesses of 3, 5 and 7 mm and air velocities of 0.5, 1 and 2 m/s. The experimental data were fitted to different mathematical moisture ratio models and the Page model was selected as the best model according to correlation coefficient R<sup>2</sup>, chi-square &chi;<sup>2</sup> and root mean square error (RMSE) parameters. The maximum values of moisture diffusivity was&nbsp;6.98 &times; 10<sup>&ndash;9</sup> m<sup>2</sup>/s at air velocity of 2 m/s and slice thickness of 7 mm while the minimum value of the moisture diffusivity was 1.58 &times; 10<sup>&ndash;9</sup> m<sup>2</sup>/s at air velocity of 0.5 m/s and slice thickness of 3 mm.


2016 ◽  
Vol 369 ◽  
pp. 119-124
Author(s):  
E.M.A. Pereira ◽  
J.V. Silva ◽  
J.P.S. Santos ◽  
T.H.F. Andrade ◽  
A.G. Barbosa de Lima

This work aims to conduct an experimental study of the drying kinetics of castor bean fruits (Ricinuscommunis L., “BRS Energia” variety). Experiments were conducted using an oven at air temperatures 50 and 70°C and air relative humidity values 16.34 and 6.24%, respectively. The castor bean fruits were considered as a triaxial spheroid. The experimental moisture content data as a function of time were fitted to different lumped models (namely Henderson and Pabis, Page, Midilli and two-term exponential models) available in the literature.The values of the effective moisture diffusivity were obtained from the Fick's diffusion model. Results shows that the two-term drying model could adequately describe the thin layer drying behavior of castor bean fruit, and that the effective moisture diffusivity increases with increasing drying air temperature.


Author(s):  
Siti Asmaniyah Mardiyani ◽  
Sumardi Hadi Sumarlan ◽  
Bambang Dwi Argo ◽  
Amin Setyo Leksono

Moisture diffusivity and activation energy are two important variables in a drying process to understand a certain product's drying behavior. This study aimed to determine the value of effective moisture diffusivity and the activation energy of red pepper in a conventional forced convective drying based on electricity (conventional convective drying/CCD) and forced convective drying based on solar energy (convective solar drying/CSD). The value of effective moisture diffusivity was determined using the equation, which refers to Fick’s second law. The Arrhenius equation determines the activation energy value as a model of the relationship of inverse temperature and the normal logarithmic value of effective moisture diffusivity. The results showed that the values of effective moisture diffusivity of CCD 70 °C were the highest. The regression analysis between the drying layers (X), and effective moisture diffusivity (Y) showed a polynomial pattern with a coefficient determination R2 value of 0.85 (CCD 70 °C), 0.81 (CCD 60 °C), 0.88 (CCD 50 °C), and 0.48 (CSD). (R2) The higher moisture diffusivity values in CCD indicated that the drying systems are more stable than CSD. The drying activation energy calculation showed that the value of CCD's activation energy was 36.36 kJ/mol.K, while the value of CSD's activation energy was 31.28 kJ/mol.K. Those results were consistent with the results of the previous studies.


2021 ◽  
Vol 51 (3) ◽  
pp. 211-216
Author(s):  
Orhan Ozunlu ◽  
Haluk Ergezer ◽  
Engin Demiray ◽  
Ramazan Gokce

In the present research, it was aimed to understand the effect of different rehydration temperatures (80, 90 and 100°C) on rehydration kinetics of hot air dried chicken breast meat cubes. The rehydration rate increased with the increasing of temperature of rehydration water. ΔE and chroma values of the rehydrated samples at 90°C and 100°C samples were found statistically similar. To describe the rehydration kinetics, four different models, Peleg’s, Weibull, first order and exponential association, were considered. Between these four models proposed Peleg’s model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of chicken meat increased as water rehydration temperature increased.


Sign in / Sign up

Export Citation Format

Share Document