Fuel Cell and Hydrogen Energy

2014 ◽  
Vol 83 (1) ◽  
pp. 63-69
Author(s):  
Akihiko FUKUNAGA
Keyword(s):  
2017 ◽  
Vol 50 (7-8) ◽  
pp. 159-168 ◽  
Author(s):  
Yavuz Bahadır Koca ◽  
Yüksel Oğuz ◽  
Ahmet Yönetken

In this proposal, microcontroller-based energy flow control was designed in order to effectively and efficiently enable the use of energy sources in a hybrid energy generation system including wind, solar, and hydrogen energy. It was assumed that the hybrid energy generation system is dynamic during the design of the microcontroller-based energy flow control. A wind–solar energy generation system was determined as the base load power plant. Depending on the demand, the battery group and fuel cell were activated effectively. If an energy surplus occurred, it was stored in battery groups and transformed into hydrogen energy via a hydrogen generator simultaneously. In addition to providing energy sustainability, a constant active status of the energy storage group was prevented and the physical life of the group was prolonged by means of the microcontroller-based control system. If consumer demand could not be met by the main energy sources including wind and solar energy, the battery groups and fuel cell were activated and provided the energy sustainability. After a certain level of charge was reached in the battery group, it was deactivated via the control system in order to prevent unnecessary use of energy. By means of the microcontroller-based control system, the usage of energy generated with the hybrid energy generation system was analysed according to its efficiency.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012011
Author(s):  
Ziyi Du ◽  
Hongxu Zhan

Abstract Nowadays, many types of fuel cells have made significant progress. In 2014, they were applied to the production model Toyota’s FCHV-Adv. With their high efficiency and low pollution, fuel cells have gradually started to replace some traditional technologies in many energy applications and production industries and have become a hot topic of interest in recent years. Depending on the type of fuel, there are various types, and different fuel cells work on different principles, leading to differences in their performance. This paper lists the different fuel cells and their application scenarios in the automotive industry. In addition, the use of hydrogen in fuel cell vehicles is also a major concern. This paper briefly discusses the current hydrogen production and four different types of fuel cell vehicles and their energy management strategies. All the technical advantages of fuel cells and hydrogen energy are ultimately reflected in fuel cell vehicles, and this paper describes the current challenges and future possibilities.


Author(s):  
Peter P. Edwards ◽  
Vladimir L. Kuznetsov

Hydrogen is the simplest and most abundant chemical element in our universe— it is the power source that fuels the Sun and its oxide forms the oceans that cover three quarters of our planet. This ubiquitous element could be part of our urgent quest for a cleaner, greener future. Hydrogen, in association with fuel cells, is widely considered to be pivotal to our world’s energy requirements for the twenty-first century and it could potentially redefine the future global energy economy by replacing a carbon-based fossil fuel energy economy. The principal drivers behind the sustainable hydrogen energy vision are therefore: • the urgent need for a reduction in global carbon dioxide emissions; • the improvement of urban (local) air quality; • the abiding concerns about the long-term viability of fossil fuel resources and the security of our energy supply; • the creation of a new industrial and technological energy base—a base for innovation in the science and technology of a hydrogen/fuel cell energy landscape. The ultimate realization of a hydrogen-based economy could confer enormous environmental and economic benefits, together with enhanced security of energy supply. However, the transition from a carbon-based(fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological, and socio-economic barriers. These include: • low-carbon hydrogen production from clean or renewable sources; • low-cost hydrogen storage; • low-cost fuel cells; • large-scale supporting infrastructure, and • perceived safety problems. In the present chapter we outline the basis of the growing worldwide interest in hydrogen energy and examine some of the important issues relating to the future development of hydrogen as an energy vector. As a ‘snapshot’ of international activity, we note, for example, that Japan regards the development and dissemination of fuel cells and hydrogen technologies as essential: the Ministry of Economy and Industry (METI) has set numerical targets of 5 million fuel cell vehicles and10 million kW for the total power generation by stationary fuel cells by 2020. To meet these targets, METI has allocated an annual budget of some £150 million over four years.


Author(s):  
Jiang Yunzhe ◽  
Zou Bowei ◽  
Wang Feifei ◽  
Liu Mengmeng

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6365
Author(s):  
Hosein Kalantari ◽  
Seyed Ali Ghoreishi-Madiseh ◽  
Agus P. Sasmito

Mining operations in remote locations rely heavily on diesel fuel for the electricity, haulage and heating demands. Such significant diesel dependency imposes large carbon footprints to these mines. Consequently, mining companies are looking for better energy strategies to lower their carbon footprints. Renewable energies can relieve this over-reliance on fossil fuels. Yet, in spite of their many advantages, renewable systems deployment on a large scale has been very limited, mainly due to the high battery storage system. Using hydrogen for energy storage purposes due to its relatively cheaper technology can facilitate the application of renewable energies in the mining industry. Such cost-prohibitive issues prevent achieving 100% penetration rate of renewables in mining applications. This paper offers a novel integrated renewable–multi-storage (wind turbine/battery/fuel cell/thermal storage) solution with six different configurations to secure 100% off-grid mining power supply as a stand-alone system. A detailed comparison between the proposed configurations is presented with recommendations for implementation. A parametric study is also performed, identifying the effect of different parameters (i.e., wind speed, battery market price, and fuel cell market price) on economics of the system. The result of the present study reveals that standalone renewable energy deployment in mine settings is technically and economically feasible with the current market prices, depending on the average wind speed at the mine location.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 739 ◽  
Author(s):  
Milad Bahrami ◽  
Jean-Philippe Martin ◽  
Gaël Maranzana ◽  
Serge Pierfederici ◽  
Mathieu Weber ◽  
...  

To deal with the intermittency of renewable energy resources, hydrogen as an energy carrier is a good solution. The Polymer Electrolyte Membrane Fuel Cell (PEMFC) as a device that can directly convert hydrogen energy to electricity is an important part of this solution. However, durability and cost are two hurdles that must be overcome to enable the mass deployment of the technology. In this paper, a management system is proposed for the fuel cells that can cope with the durability issue by a suitable distribution of electrical power between cell groups. The proposed power electronics architecture is studied in this paper. A dynamical average model is developed for the proposed system. The validation of the model is verified by simulation and experimental results. Then, this model is used to prove the stability and robustness of the control method. Finally, the energy management system is assessed experimentally in three different conditions. The experimental results validate the effectiveness of the proposed topology for developing a management system with which the instability of cells can be confronted. The experimental results verify that the system can supply the load profile even during the degradation mode of one stack and while trying to cure it.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5463 ◽  
Author(s):  
Yi Zhang ◽  
Hexu Sun ◽  
Yingjun Guo

In some areas, the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies, batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter, an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine, photovoltaic panels, a battery, an electrolyzer, a hydrogen storage tank, a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization, energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored, such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance, and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.


Sign in / Sign up

Export Citation Format

Share Document